

Topological modes in stellar oscillations

Armand LECLERC¹, Guillaume LAIBE¹, Antoine VENAILLE², Pierre DELPLACE², Nicolas PEREZ¹

¹Univ Lyon, Univ Lyon1, ENS de Lyon, CNRS, CRAL UMR5574, F-69230, Saint-Genis,-Laval, France. ²ENS de Lyon, CNRS, Laboratoire de physique, F-69342 Lyon, France.

Abstract

Certain peculiar waves in inhomogeneous fluids have been discovered using topological analysis. Recently, a Lamb-like wave has been theorized to exist in stratified compressible fluids, however it is hardly expected to propagate on Earth, neither in the atmosphere nor in oceans.

Q: Do Lamb-like waves propagate in stellar objects? What methods are needed to understand them?

Linear waves

We adapt tools that have been originally developed by the topological insulator community to study the seminal case of a simple oscillating star (adiabatic perturbations of a non-rotating, non-magnetic, stably stratified).

Perturbations evolution as a Schrödinger-like equation:

$$i\partial_t \mathbf{X} = \mathcal{H} \mathbf{X} \text{ with } \mathcal{H} = \begin{pmatrix} 0 & 0 & 0 & L_{\ell}(r) \\ 0 & 0 & iN & -iS + ic_{s}\partial_{r} \\ 0 & -iN & 0 & 0 \\ L_{\ell}(r) & iS + ic_{s}\partial_{r} & 0 & 0 \end{pmatrix}$$

$$N^2 \equiv -g \frac{\mathrm{dln}\,\rho_0}{\mathrm{d}r} - \frac{g^2}{c_{s}^2} \qquad S \equiv \frac{c_{s}}{2g} \left(N^2 - \frac{g^2}{c_{s}^2} \right) - \frac{1}{2} \frac{\mathrm{d}c_{s}}{\mathrm{d}r} + \frac{c_{s}}{r}.$$

Topology: Berry-Chern monopole

The Wigner matrix is also used to define a central quantity in topological physics: the **Berry curvature**. It is a real vector field, which reads for one of the eigenvectors

 $m{F} \equiv i m{
abla} \wedge \left(m{X}^\dagger \cdot m{
abla} m{X}
ight)$

(measurement of twisting of eigenvectors when parameters vary.)

There is a topological obstruction of defining the eigenvector's phase globally when the curvature is infinite.

The Berry curvature has a pole at the point:

$$S = k_r = 0$$
, and $L_{\ell} = N$

Associated topological invariant

$$C = \frac{1}{2\pi} \oint_{\Sigma} d\mathbf{\Sigma} \cdot \mathbf{F} = 1$$

(flux of Berry curvature on a surface enclosing it)

A: The Lamb-like wave should propagate in every stellar object.

It is a bulk mode crossing the gap. It is of topological origins.

Publication

Local problem: Wigner transform

How to set up a local version of the problem? Transpose it to a phase space, by Wigner Transform. It transforms the differential operator into a simple matrix, defined on a **phase space** $\{r, k_r\}$.

For this problem, it reads $H \equiv egin{pmatrix} 0 & 0 & 0 & L_{\ell} \ 0 & 0 & iN & k_r - iS \ 0 & -iN & 0 & 0 \ L_{\ell} & k_r + iS & 0 & 0 \end{pmatrix}$

The frequencies form two bands and a gap (left).

This gap closes for $S = k_r = 0$ (right).

Lamb-like wave

Topology theorem:

There are as many waves transiting between the bands, as $\mathcal C$.

Solving numerically for realistic models, we observe the propagation of 1 mode of topological origin: the Lamb-like wave.

Its existence is guaranteed for every object with **cancelling** S(r), which is ubiquitous. (Geometrically and presence of edge)

Future prospects

- If it does propagate, the Lamb-like wave should have been simulated/detected already. Can it be found in simulations?
- Hermiticity is crucial for topological machinery. What if the problem is not Hermitian? (Effects of excitation and diffusion)
- Use of topology for instability studies: convection (connected to this problem), differential rotation (disks instabilities).