

Atmospheric retrievals of terrestrial exoplanets with future space missions

ETH zürich

Planet S

Swiss National
 Science Foundation

Eleonora Alei Post-doctoral Researcher ETH Zurich

Email: elalei@phys.ethz.ch Twitter: @EleonoraAlei Website: https://people.phys.ethz.ch/~elalei/

Bayesian Retrievals

Why are retrievals useful?

1. To analyse current observations

But also...

- 1. To test analysis routines
- 2. To define requirements for next-gen instruments

What requirements are we interested in?

Why are retrievals useful?

1. To analyse current observations

But also...

- 1. To test analysis routines
- 2. To define requirements for next-gen instruments

What requirements are we interested in?

Wavelength coverage

Why are retrievals useful?

1. To analyse current observations

But also...

- 1. To test analysis routines
- 2. To define requirements for next-gen instruments

What requirements are we interested in?

Wavelength coverage

Resolution – R

Why are retrievals useful?

To analyse current 1. observations

But also...

- To test analysis routines 1.
- 2. To define requirements for next-gen instruments

What requirements are we interested in?

Wavelength coverage

Resolution – R

Some examples

(apologies if I did not include your favorite one)

- HabEx/LUVOIR: R=[70, 140], S/N=[5, 10, 15, 20].
 Wavelength range =[0.4, 1] μm.
- Roman: R=50 between 0.6-0.97 μm + two photometric points between 0.5 and 0.6 μm
- Wavelength-dependent noise simulation, but only detector noise considered.

Results:

- HabEx/LUVOIR: At R=70, S/N=15 only weak detection of P_0 , H_2O , O_3 , O_2 . At R=140, S/N \ge 10 required to define these parameters.
- Roman: $S/N \ge 20$ required.

Damiano & Hu, 2022b

- HabEx-like instrument: Wavelength range = 0.4-1.0 μm at R=[70,140](+1.0-1.8 μm at R=40); S/N = [5, 10,20]
- Four scenarios: Earth-twin, Archaean Earth, CO₂-dominated Earth with O₂ and clouds, dry CO₂-dominated Earth.

Results:

• At R=140, including the NIR band allows to deduce the dominant species and to correctly retrieve biosignatures. S/N>10 required for atmospheric composition and clouds.

Konrad+2022 (LIFE III)

• LIFE:

- R = [20, 35, 50, 100],
- S/N=[5, 10, 15, 20],
- wavelength range = $[6-17, 4-18.5, 3-20] \mu m$
- Simulated observations using LIFEsim.
- Cloud-free Modern Earth scenario

Results:

- For S/N ≥ 10, constraints on the radius, surface pressure, and surface temperature (complementarity with reflected-light missions).
- To detect CH₄, R ≥ 50, S/N ≥ 10 & a wavelength range of at least 4-18.15 μm are required (current minimum requirements for the LIFE mission)

Alei+2022a (LIFE V)

• LIFE:

- R = [50, 100],
- S/N=[10, 20],
- wavelength range = $[4-18.5] \mu m$
- Simulated observations using LIFEsim.
- Cloud-free and cloudy Earth in Time

Results:

- Detection of CH₄+O₃ (biosignature pair) from 0.8 Ga Earth and Modern Earth. Tentative detection of potential biological activity from 2.0 Ga Earth to Modern Earth.
- Minimum requirements found in LIFE III **confirmed**.

Konrad+2023 (LIFE X)

• LIFE: Venus-like planet

- R = [35, 50, 100],
- S/N=[10, 15, 20],
- wavelength range = $[3-20, 4-18.5] \mu m$
- Simulated observations using LIFEsim.
- Retrieval assuming various cloud parameterizations.

Results:

- Detection of CO₂ independently of S/N.
- Possible evidence of clouds from $R \ge 50$, $S/N \ge 20$

Retrieval performance of atmosphere models (opaque H_2SO_4 clouds & cloud-free) Venus' MIR spectrum. For positive values (red) the cloud-free model performed better. Negative values (green) favour the cloudy model.

Robinson & Salvador, 2022

- HabEx/LUVOIR and LIFE-like instruments: Retrieval of reflected light+thermal emission (+transmission photometry).
- Validation with Earth's reflected light spectrum (and other Solar System cases).

Results:

- Similar performance can be achieved by **trading-off S/N and wavelength range**.
- HabEx/LUVOIR: Considering wavelengths between 0.3–2.5 µm, S/N ≥ 20 needed to characterize the atmosphere.
- LIFE: S/N = 20 sufficient to characterize the atmosphere.

VIS+IR (Alei+, in prep.)

WIP

Conclusions

- Bayesian retrieval is a statistically robust method to gather information on the atmospheres of exoplanets from their observed spectra.
- Retrievals are also useful to design future missions (in terms of defining the scientific requirements e.g. R, S/N, wavelength range)
- ...But there is room for improvement and synergy studies between various instruments.

LARGE INTERFEROMETER FOR EXOPLANETS

Backup slides

The mid-IR opportunity

Molecular abundances

Major Constituents

Impact of opacities

Alei+2022b

Retrieval on same spectrum of the Modern Earth (Rugheimer & Kaltenegger 2018) assuming different opacities.

Run	Details	
1	Line lists: HITRAN 2012, HITEMP 2010, and ExoMol. Broadening: Air for HITRAN/HITEMP, H-He for ExoMol. Cutoff: Sub-Lorentian cutoff.	-6 -4 -2 log ₁₀ (CO ₂)
2	Line lists : ExoMol (2012-2021); O ₃ (HITRAN 2012). Broadening : H-He broadening; O ₃ : air broadening. Cutoff : ExoMol cutoff.	
3	Line lists: HITRAN 2020. Broadening: Air. Cutoff: 100 cm ⁻¹	Posteriors
4	Line lists: HITRAN 2020. Broadening: Air. Cutoff: 25 cm ⁻¹	
	•	-1.5 - 1.0 - 0.5 0
		10910(10[bdi])

Input models

Evolution of the Earth's atmosphere (James Kastings, Scientific American, June 2004)

Venus-Twin retrievals

LIFE IX (Konrad+ 2023)

Planet parameters: $\bigotimes M_{pl} \bigotimes R_{pl} \bigotimes P_{surf} \bigotimes T_{surf}$ Abundances: $\bigotimes CO_2 \bigotimes CO \bigotimes H_2O$

 \rightarrow Results independent of R and S/N

Can we find evidence for Clouds?

→ Possible from $R \ge 50$, $S/N \ge 20$

Retrieval performance of atmosphere models (opaque H_2SO_4 clouds & cloud-free) Venus' MIR spectrum. For positive values (red) the cloud-free model performed better. Negative values (green) favour the cloudy model.

Open issues and synergies

- Number of parameters vs computational feasibility (\rightarrow machine learning?)
- Priors can induce biases (\rightarrow previous measurements estimates could help)
- Forward model differences can cause biases (\rightarrow intercomparison?)

Open issues and synergies

- Number of parameters vs computational feasibility (\rightarrow machine learning?)
- Priors can induce biases (\rightarrow previous measurements estimates could help)
- Forward model differences can cause biases (\rightarrow intercomparison?)

However...

- There will be synergies between various missions (→ e.g., LIFE + LUVOIR/HabEx)

Konrad+(LIFE III)