The early Earth as an example for inhabited exoplanets

Benjamin Charnay¹, Boris Sauterey², Régis Ferrière, Antonin Affholder, Stéphane Mazevet, Thomas Leliboux, Pascal Rannou, Bruno de Batz de Trequelleon, Yassin Jaziri, Franck Lefèvre, Thomas Drant, Nathalie Carrasco

l'Observatoire LESIA

¹LESIA, Observatoire de Paris ²ENS Paris

IBENS Institut de Biologie de l'Ecole Normale Supérieure

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

Evolution of Earth's atmosphere and motivations for studying the Archean Earth

Catling & Zahnle 2020

- The evolution of O2 is very complex with 3 critical steps (oxygenic photosynthesis and two oxidation events)
- During most of Earh's history O₂ was very difficult detectable from and exoplanet point of view
- The Archean Earth had a very productive biosphere even before oxygenic photosynthesis
- It is essential to understand all the implications of biospheres not dominated by oxygenic photosynthesis

Ecosystem-planetary model for methanogens

Ecosystem-planetary model for methanogens

Time (h)

Composition for chemiotrophic ecosystems

5

Ecosystem-planetary model for methanogens on the early Earth Sauterey, Charnay et al., Nature Communications 2020:

- \succ The production of biomass and CH₄ is maximal for complete ecosystem (syntrophy)
- > High CH₄ concentration (100-1000 ppm) → significant warming (~10°C)
- > A low CO:CH₄ is characteristic of the presence of ecosystems \rightarrow minimisation of the chemical disequilibrium

The enigma of early Mars

Global history of Mars

	Amazonian	Hesperian	Noachian	Pre- bachian	
			Crust formation		
Volcanis	tion	? Tharsis formation	1	?	
	lesperian ridged plains	Hesperia			
			Hellas	- H	
Bolide impact			Argyre		
	Smaller impactors	Small	?	?	
	Valley networks		?		
Aqueous geomorpholog					
	er degradation and basin lake formation	Crater degr		?	
and Almost Millions	ates	Phyllosilicates		?	
Aqueous geochemist	Sulfates and evaporites	Sulfate			
	Manganese oxides	Manga			

Wordsworth et al. 2020

Emergence of life on Earth

Favored solution to warm early Mars: H₂-rich atmosphere from a reduced mantle

- (Ramirez et al. 2013, Wordsworth et al. 2017,2021)
- \rightarrow warming by CIA of CO₂-H₂ and CO₂-CH₄

 \rightarrow CIA of CO₂-H₂ is stronger than CIA of CO₂-CH₄ (Turbet et al. 2020)

Habitability and climate impact of methanogens

Ecosystem-planetary model for methanogens on early Mars Sauterey, Charnay et al., Nature Astronomy 2022:

- > Sub-surface of early Mars was likely habitable
- \succ The presence of H₂-based methanogens induces a cooling limiting warm climate

The case of a hazy early Earth

Organic haze formation for $CH_4/CO_2 > 0.1$

Evidence for a CH₄-rich archean atmosphere with episodic haze:

Trainer et al. 2006

Anti-greenhouse effect from 1D models

A scenario for the origin of life: transient H_2 -dominated atmosphere after giant impacts of the late Veneer.

(Genda et al. 2017, Benner et al. 2019, Zahnle et al. 2020, Itcovitz et al. 2022)

- > Vaporized ocean water reacts with iron producing a H₂-rich atmosphere
- \succ Thermochemistry after impacts leads to the conversion of CO₂ into CH₄
- > Photochemistry leads to the formation of organic haze, HCN and prebiotic molecules

Current project: 3D modeling of photochemistry and organic haze on the early Earth

People involved: B. Charnay, T. Leliboux, P. Rannou, B. de Batz, Y. Jaziri, F. Lefèvre, T. Drandt, N. Carrasco

Objectives:

- Formation, distribution and dynamics of haze
- Impact of haze on the climate and on photochemistry
- Application to exoplanets (e.g. Trappist-1 e, K2-18 b)

Tool: the Generic PCM

Photochemistry (Jaziri et al. 2022) :

- 120 reactions
- Solar UV flux at 2.7 Ga (Claire 2013)
- Haze formation pathway: $C_2H + C_2H_2 \rightarrow HCAER + H$

Microphysical model (Burgalat et al. 2014):

- Spherical and fractal particles (with moments)
- Radiative coupling (in development)
- Haze optical properties from lab experiments (Drant et al. submitted)

Results from 3D simulations:

➢ Production rate strongly reduced for a H₂-rich atmosphere. (CH₃ + H → CH₄)
→ H₂-based methanogenesis might not lead

to optically thick haze

Poleward haze transport with relatively haze-free equatorial regions

Surface temperature without photochemistry

Production rate= 2.7.10¹³ g/year

Production rate= 4.6.10¹⁰ g/year

Take-home messages

- The conditions of the early Earth and early Mars could have allowed high CH₄ concentrations produced by methanogens
- Methanogens would have produced a warming on the early Earth but a cooling on early Mars due to differences in the H₂ abundance
- > A biosphere based on chemiotrophic ecosystems implies a low CO/CH₄ ratio
- > 3D simulations of photochemical haze on the early Earth show:
 - a sensitivity to the H₂ mixing ratio for the haze production rate
 - a poleward haze transport → might be favorable for transit spectroscopy
 - Next step: adding haze radiative effects

Sauterey, Charnay, Affholder, Mazevet, Ferrière, « Co-evolution of primitive methane-cycling ecosystems and early Earth's atmosphere and climate», *Nature Communications*, 2020

Sauterey, Charnay, Affholder, Mazevet, Ferrière, « Early Mars habitability and global cooling by H₂-based methanogens», *Nature Astronomy, 2022*

Composition for chemiotrophic ecosystems

Evolution of chemical disequilibrium during Earth's history

Global chemical disequilibrium is not a biosignature

- 1) Difficult to measure (uncomplete invetory of molecules in the atmosphere and the ocean)
- 2) Chemical disequilibrium is not necessary higher with life than without life
- 3) Chemotrophic ecosystems reduce the chemical disequilibrium

<u>Classical definition :</u> "A biosignature is defined as any characteristic element, molecule, substance, or feature that can be used as evidence of past or present life and is distinct from an abiogenic background" (Domagald et al. 2016)

	Type	Biosignatures	Examples	Appropriate techniques
In situ Vi	Visual biosignatures	Direct observation of active life	Cellular structures (possibly seen to be motile or reproducing)	Microscopy or macroscopic imagery
		Fossils	Fossilized cells	
		Artifacts of life	Stromatolites or endolithic microborings	
	Chemical biosignatures	Biological macromolecules	Proteins or nucleic acid polymers (e.g., DNA, RNA)	Gas chromatography- mass spectrometry,
		Molecular fossils	Breakdown products of biomolecules, such as hopanoids or steranes	Raman spectroscopy X-ray spectroscopy
		Molecular evidence of metabolism	Biogenic biases, such as isotopic fractionation or homochirality	
		Thermodynamic or kinetic disequilibrium within environment	Gradients of redox species in column of lake water	
		Biominerals	Certain silicate, carbonate, or iron minerals, or metal enrichments of, <i>e.g.</i> , Cu, Mo, Ni, W	
Remote	Spectral biosignatures	Large-scale environmental disequilibrium	Atmospheric disequilibrium, e.g., O ₂ and CH ₄	IR and visible spectroscopy
		Photosynthetic life	Red edge of vegetation	
	Spatially resolved	Geometrical structures of intelligent life	Roads, cities, agriculture, large- scale landscape modification	Optical imaging
	Electromagnetic emissions	Intelligent broadcasts	Radio or optical signals from a civilization	Radio or optical sky surveys

Domagald et al. 2016

Oxygenic photosynthesis

Chemical disequilibrium in Solar System atmospheres

Oxygenic photosynthesis

Atmospheric photosynthesis $H_2O + h\nu$ respiration or oxidation Atmospheric oxygen $CH_2O + O_2$ Burial

Chemical disequilibrium in Solar System atmospheres

Oxygenic photosynthesis

Chemical disequilibrium in Solar System atmospheres

