

Getting ready for ELT-PCS R&D incl. on-sky experiments with SPHERE SAXO+

- ESO: <u>Markus Kasper</u>, Paul Bristow, Byron Engler, Serban Leveratto, Christophe Verinaud, Pierre-Yves Madec, Stefan Stroebele
- LUT: Jalo Nousiainen, Tapio Helin
- ETHZ: Markus Bonse, Sascha Quanz, Adrian Glauser
- STScl: Jens Kammerer
- IOP: Caroline Kulcsar, Henri-Francois Raynaud

SAXO+ team (PI A. Boccaletti) and many more

+ES+ 0 +

PCS is the next ELT instrument to be launched

Instrument	Main specifications			Schedule				
	Field of view/slit length/ pixel scale	Spectral resolution	Wavelength coverage (µm)	Phase A	Project start	PDR	FDR	First light
MICADO	Imager (with coronagraph) 50.5" × 50.5" at 4 mas/pix 19" × 19" at 1.5 mas/pix	I, Z, Y, J, H, K + narrowbands	0.8–2.45	2010	2015	2019		
	Single slit	<i>R</i> ~ 20 000						
MORFEO	AO Module SCAO – MCAO		0.8–2.45	2010	2015	Σ	\sum	\geq
Harmoni + Ltao	IFU 4 spaxel scales from: 0.8" × 0.6" at 4 mas/pix to 6.1" × 9.1" at 30 × 60 mas/pix (with coronagraph)	R ~ 3 200 R ~ 7 100 R ~ 17 000	0.47–2.45	2010	2015	2018		
METIS	Imager (with coronagraph) 10.5" × 10.5" at 5 mas/pix in <i>L</i> , <i>M</i> 13.5" × 13.5" at 7 mas/pix in <i>N</i>	L, M, N + narrowbands	3–13					
	Single slit	R ~ 1400 in L R ~ 1900 in M R ~ 400 in N		2010	2015	2019		
	IFU 0.6" × 0.9" at 8 mas/pix (with coronagraph)	<i>L</i> , <i>M</i> bands <i>R</i> ~100 000						
ANDES	Single object	<i>R</i> ~100 000	0.4-1.8 simultaneously					
	IFU (SCAO)			2018		>	>	
	Multi object (TBC)	<i>R</i> ~10000						
MOSAIC	~ 7-arcminute FoV ~ 200 objects (TBC)	<i>R</i> ~ 5000–20000	0.45–1.8 (TBC)	2018	>	>	>	
	~ 8 IFUs (TBC)	<i>R</i> ~ 5000–20000	0.8–1.8 (TBC)					
PCS	Extreme AO camera and spectrograph	TBC	TBC		>	>	$\boldsymbol{\succ}$	>

PCS R ~ 3000 - 100.000 λ ~ 0.6 - 1.8 Phase-A > 2026

https://elt.eso.org/instrument/

1 milliarcsecond (mas) = 0.001"

Characterization of nearby Exoplanets down to Earth-size: contrast and sensitivity

Brightness of nearby known Exoplanets (all sizes)

Terrestrial Planets more abundant around the abundant M-stars (~80%)

- high contrast and small inner working angle ($\leq 10^{-8}$ at few tens of mas)
- good sensitivity (I,J \gtrsim 26)

Synthetic Exo-Earth population imaged in reflected light

30

PCS Concept High Contrast Imaging + High Dispersion Spectroscopy

Snellen et al. 2015

10⁻⁴ contrast gain by HDS already demonstrated on-sky (e.g. Birkby, de Kok, Brogi et al. AJ 2017)

- R ~ 100.000 is needed to observe molecules in planet atmosphere or doppler shifted star spectrum
- 10⁻⁴ 10⁻⁵ raw PSF contrast required from XAO + coronagraph to reach 10⁻⁸ 10⁻⁹ contrast

PCS concept, AO + science instruments

Plenty of R&D needed

IFU: Integrated Optics, coupling of PSF into optical fibers

Wavefront Control

- > Non-common path aberrations (focal plane WFS, low-order WFS, ...)
- Special requirements ELT (LWE, segment phasing, ...)
- Detector technology (MKIDs, SAPHIRA, …)
- Coronagraphy
- XAO
 Deformable Mirrors with > 10.000 Actuators
 - Wavefront sensing
 - Cascaded AO with Predictive Control

XAO DM R&D: Scale 1 prototype (led by S. Stroebele, ESO)

310 mm

Development with ALPAO

Many actuators: > 13000, >128 across pupil

> High speed: small stroke settling < 300 us</p>

Sub-nm resolution

T0: March 2023, WP1 funded, looking for funding for WPs 2-4

Optical head

XAO DM R&D: Suppress DM ringing by input shaper

XAO WFS R&D: the Bi-Orthogonal-Edge sensor

Pyramid

Bi-O-Edge up to 4x more sensitive (guide star magnitude +1.5 mag) than Pyramid WFS

Verinaud et al. submitted to A&A

ELT SCAO simulation confirms predicted sensitivity gain

Predictive AO Control R&D with Machine Learning

Classical AO control:

$$\Delta a = R\Delta w$$

 $a_t = la_{t-1} + g\Delta a$

Reinforcement Learning for AO

═ ▋▌ **⋈** ╂**╛ ┿╸▋▋ ═╸▋▌ ▋▋ ═╴⋈** Ø**┚ ∞╸╂╛** ╠╬╶**╘**

PO4AO simulations

PO4AO is fast (inference time < 1 ms on ELT)</p>

- Training in parallel to observations, upload of new policy after each episode (typically some seconds)
- PO4AO follows environmental changes
- Factor 3-5 contrast improvement
- Features: Self-calibrating, predictive, robust to noise, can correct unexpected errors (?)

Nousiainen et al., Optics Express, 2021 Nousiainen et al., A&A, 2022

Lab facility: GHOST bench at ESO

SLM Meadowlark injects turbulence at 420Hz
BMC 492-1.5 DM (ETH loan)

300 um pitch
100% actuator yield

PWS (Arcetri design)

- 10 GigE camera (Sony IMX426 CMOS)
- PI modulation mirror SL-325
- GPU server implementing
 - COSMIC platform (ANU/LESIA, since August 2022)
 - Python code (B. Engler)

Engler et al., SPIE 2022

PO4AO, GHOST Bench Experiments

SAXO+ in a nutshell

Requirements :

- Improve contrast to 1e-5 at few λ/D => faster AO : 3 kHz
- Gain sensitivity for red stars => wavefront sensor in the IR
- Test control approaches for PCS => versatile RTC architecture

SAXO+ optics on top of the main beam (Diolaiti/Stadler et al.) IR Pyramid WFS + modulation + CRED 1 + 2nd DM (~28x28) Real Time Computer (COSMIC, Gratadour et al.) Predictive control (iterative, data driven ML)

SPHERE+ cols and partners

INSTITUTE
Geneva Observatory / PlanetS
INAF
MPIA
NOVA / Leiden Observatory
ESO
CNRS / LESIA
CNRS / LAM
CNRS / IPAG
CNRS / CRAL
CNRS / Lagrange
LCF
-

SAXO+ Schedule

Phase	Duration	Milestones	Dates	
-	-	Kick-off meeting	то	October 2022
Consolidation phase	18 months	consolidation review + Cost and funding review	T0+18	
Design phase	12 months	FDR. procurement starts	T0+30	
MAIT phase	12 months	PAE	T0+42	
AIV phase	6 months	Commissioning report	T0+48	April - October 2026

On-sky experience of XAO ctrl and the XAO/HDS concept also pursued through

- RISTRETTO XAO/HDS in the optical (Lovis et al.)
- > HIRISE XAO/HDS in the NIR (Vigan et al.)
- > PAPYRUS (Sauvage et al.) and SCExAO (Guyon et al.)

ELT-PCS is designed to characterize nearby Exoplanet down to Earth-size including biosignatures

ELT PCS is expected to enter phase-A around 2026

- A comprehensive R&D programme is carried out by ESO and its partners and focuses on optimized XAO
 - XAO-DM development
 - > Optimized Bi-O-Edge WFS
 - Predictive control of cascaded AO with Machine Learning

R&D is carried out through simulations, lab experiments and onsky demonstrations with SAXO+