L'origine des rayons cosmiques

révélée par leur composition.

Vincent Tatischeff (IJCLab, Orsay, France)

Journées 2023 de la SF2A Strasbourg 20-23 juin 2023

2 Cosmic ray spectrum

• Galactic origin up to the "Knee" at ~3×10¹⁵ eV and even probably up to ~10¹⁸ eV

Galactic cosmic rays & supernovae

- GCRs are thought to be produced in **Fermi**/LAT **supernova remnants (Baade & Zwicky 1934)**
- Consistent with CR power and supernova energetics: $L_{CR} = L_{\gamma} / R_{\gamma} \sim 10^{41} \text{ erg/s},$ where $R_γ$ ~ 0.004 is the γ -ray radiation yield (= efficiency) for $p + p \rightarrow \pi^0 + X$ and L_y from π^0 decay $\sim 5 \times 10^{38}$ erg/s (Strong et al. 2010) CR p

- \Rightarrow L_{CR} ~ 10% of the kinetic power supplied by supernovae
- **Diffusive shock acceleration in supernova shocks** = First-order Fermi (1949) process (Krymskii 1977; Bell 1978; Axford et al. 1978; Blandford & Ostriker 1978)

V. Tatischeff *COMPERTY CONTRAGERTY CONTRAGERTY CONTRAGERTY CONTRAGERTY CONTRAGERTY CONTRAGERTY CONTRAGERTY CONTRAGERTY CONTRAGERTY CONTRACTY CONTRACTY CONTRACTY CONTRACTY CONTRACTY CONTRACTY CONTRACTY CONTRACTY CONTRACTY*

SN distribution in the ISM phases

- Massive stars are born in OB association and their wind activities generate **superbubbles** (SBs) of hot plasma, where most core-collapse SNe explode $(-80\%;$ Lingenfelter & Higdon 2007) SNe
- With 25% of Galactic SNe of Type la occurring in the warm ISM: 60% of SNe in hot SBs, 40% in warm ISM (28% in WNM, 12% in WIM)

Superbubble T~10⁶ K $H₂$ Warm ISM V. Tatischeff *COMPERTY CONTRAGERTY CONTRAGERTY CONTRAGERTY CONTRAGERTY CONTRAGERTY CONTRAGERTY CONTRAGERTY CONTRAGERTY CONTRAGERTY CONTRACTY CONTRACTY CONTRACTY CONTRACTY CONTRACTY CONTRACTY CONTRACTY CONTRACTY CONTRACTY*

GCR source abundance data

- **1. Overabundance of refractory elements** over volatiles
- **2. Under-abundance of protons and α-particles**
- **3. Overabundance of heavier volatile elements** (Zn, Se, Kr...) compared to lighter ones (N, Ne, S, Ar...)?
- **4. Overabundance of ²²Ne** (²²Ne/²⁰Ne is 5 times solar)

See Meyer, Drury & Ellison (1997)

1. Acceleration of dust grains

- \circ **Higher efficiency of acceleration of dust grains** in SN shocks, because interstellar $\begin{matrix} 1 & \text{downstream} \\ 0 & \text{downstream} \end{matrix}$ grains can have **very large** $A/Q \sim 10^4$ - 10^8 and particles with a high rigidity $(R \propto A/Q)$ feel a larger ΔV of the background plasma (Ellison et al. 1997, 1998)
	- **i.** Grain acceleration
	- **ii.** Grain sputtering with ambient atoms
	- **iii.** Injection of sputtered ions with the supra-thermal velocity of the parent grain
- o **ISM phase where dust grains are accelerated?**
	- \checkmark Diffuse shock acceleration occurs in **ionised media** (requires plasma waves)
	- \checkmark But dust grains are mainly found in **cold molecular clouds** and the **warm ISM** (however, see Ochsendorf et al. (2015) for dust in the Orion-Eradinus superbubble)

2. Protons, α-particles and O source spectra

- Fit to **Voyager 1** and **AMS-02** data using a **1D** advection-diffusion model with homogeneous diffusion for the GCR propagation (Evoli et al. 2019)
- **Broken power law source spectra from** a fit of propagated spectra to the data

Parameter H He O E_{break} 10 ± 2 GeV/n 200^{+160}_{-120} MeV/n 160^{+40}_{-30} 160^{+40}_{-30} MeV/n
3 32+0.18 $\gamma_{1,e}$ 4.10 ± 0.03 3.98^{+0.08} 3.32^{+0.18} 0.24 $\gamma_{h.e.}^{\prime\prime}$ a 4.31 4.21 4.26 $\chi^2_{\rm min}$ 16.0 for 13 d.o.f.^c 7.3 for 14 d.o.f. 5.9 for 12 d.o.f.

 a Parameter fixed from Evoli et al. (2019).

Table 2. CR source spectrum parameters (Eq. 2).

^b Minimum χ^2 from a fit of the propagated spectrum to Voyager 1 data.

 c d.o.f.: degrees of freedom.

2. p and α -particles in the GCR composition α

- **Integration of source spectra** => $p \& \alpha$ abundances similar to those of the other volatiles N, Ne and Ar, provided that the **minimum CR source energy is of the order of a few hundred keV/n**
- Escape of low-energy CR from their sources (see Schroer et al. 2022)? **Source spectrum differences between p, α-particles and heavy nuclei?**

3. Charge dependence of GCR volatile abundances

- o Volatile element abundances in the GCR source composition depend on **ionisation states in shock precursors**, i.e. on **ISM phases**, because **acceleration efficiency depends on ion rigidity (Ellison et al. 1981; Caprioli et al. 2017)**
	- Warm ISM: **photoionization precursors** mainly produced by He I and He II photons from the post-shock region (Ghavamian et al. 2000; Medina et al. 2014)
	- **Superbubbles**: collisional ionisation in a hot plasma (negligible photoionization)

GCR source composition model

- o Model of GCR source abundances fitted to data (AMS-02, SuperTIGER...) from
	- \checkmark **Mean composition of the local ISM** (B-type stars + solar system) VT, J. C. Raymond, J. Duprat,
	- " **Ionisa6on states in SNR shock precursor**
	- √ Elemental fraction in ISM dust mainly from gas-phase element depletions (Jenkins 2009, 2019; Ritchey et al. 2018) S. Gabici, S. Recchia (2021)

⇒ Preferential acceleration of the GCR volatile elements in superbubbles

- Effects possibly limiting the efficiency of shock acceleration in the warm ISM: **ion-neutral damping, neutral return flux (Morlino et al. 2013)?**
	-

4. ²²Ne abundance in GCRs **and the shown that 50 millips aboundance in GCRs** $\frac{11}{11}$: dyunudlict III OCNS the measurement uncertainties, to 59Co. The 59Ni can decay if it *differs from that of the Solar System.*

- GCR ²²Ne/²⁰Ne ratio ≈ 0.35 , i.e \sim 5 times **the solar ratio** (Garcia-Munoz et al. 1970; **Binns et al. 2005)**
- Contribution to GCRs of **Wolf-Rayet wind material** $(^{14}N(\alpha, \gamma)^{18}F(\beta^{+})^{18}O(\alpha, \gamma)^{22}Ne$ during He burning)? (Cassé & Paul 1982)
- GCR origin in **superbubbles** enriched in 22 Ne from winds of massive stars?
	-

following the completion of the WR phase. So there is, at most, an

4. GCR ²²Ne from wind termination shocks 12

Shocked

interstellar gas

Shocked stellar wind

Termination shock

Contac discontinuit

Stellar

wind

Interstella

gas

Forward

- because overproduction of $14N$ (main sequence): $(N/Ne)_{wind}$ =2.6 => 5.5x the ratio in the GCR source
- (N/Ne)_{wind}=2.6 => 5.5x the ratio in the GCR source $\frac{1}{2}$
More likely ²²Ne is produced by shock acceleration $\frac{1}{2}$
in **wind termination shocks** (see Morlino et al. 2021)
Assuming the acceleration efficiency in in wind termination shocks (see Morlino et al. 2021)
- Assuming the acceleration efficiency in WTS to be proportional to the wind mechanical power:
- ⇒ ²²Ne/²⁰Ne=1.56 in the accelerated wind composition
- \Rightarrow **Small contribution** to the GCR source composition: $x_w \approx 6\%$

Cosmic-rays from massive star clusters and superbubbles¹³

o Vieu et al. (2020, 2022a, 2022b, 2022c): detailed theory of **cosmic-ray production in** superbubbles from stellar winds, supernova remnants and turbulence, taking into account the nonlinear feedback of the accelerated particles => CR are mainly accelerated in SNRs, only 5 - 10% of CRs are produced in WTS

○ Vieu & Reville (2022): explain the Galactic CR population up to hundreds of PeV

- \circ Composition of Galactic cosmic rays is **key to understanding their origin** and their effects in the ISM and in cosmology (atelier S07)
- \circ Measured source abundances of **primary and mostly primary CRs from H** to Zr point to an origin in **superbubble environment**, mainly from **acceleration in SN shocks**, with a small contribution of acceleration in **wind termination shock**s ($x_w \approx 6\%$) to explain the ²²Ne overabundance
- \circ More work is needed to understand the origin of the GCR refractories acceleration of **dust grains in superbubbles?** (atelier S10)
- \circ CR production in massive star clusters and superbubbles up to 10¹⁸ eV? \Rightarrow **Cherenkov Telescope Array, LHAASO**