L'origine des rayons cosmiques

révélée par leur composition

Vincent Tatischeff (IJCLab, Orsay, France)

Journées 2023 de la SF2A

Strasbourg

20-23 juin 2023

Cosmic ray spectrum

• Galactic origin up to the **"Knee" at ~3×10¹⁵ eV** and even probably up to **~10¹⁸ eV**

Galactic cosmic rays & supernovae

- GCRs are thought to be produced in supernova remnants (Baade & Zwicky 1934)
- Consistent with CR power and supernova energetics: $L_{CR} = L_{\gamma} / R_{\gamma} \sim 10^{41} \text{ erg/s}$, where $R_{\gamma} \sim 0.004$ is the γ -ray radiation yield (= efficiency) for $p + p \rightarrow \pi^0 + X$ and L_{γ} from $\pi^0 \text{ decay} \sim 5 \times 10^{38} \text{ erg/s}$ (Strong et al. 2010)

3

20 - 23 juin 2023

- $\Rightarrow L_{CR} \sim 10\%$ of the kinetic power supplied by supernovae
- **Diffusive shock acceleration in supernova shocks** = First-order Fermi (1949) process (Krymskii 1977; Bell 1978; Axford et al. 1978; Blandford & Ostriker 1978)

Strasbourg

V. Tatischeff

SN distribution in the ISM phases

- Massive stars are born in OB association and their wind activities generate superbubbles (SBs) of hot plasma, where most core-collapse SNe explode (~80%; Lingenfelter & Higdon 2007)
- With 25% of Galactic SNe of Type Ia occurring in the warm ISM: 60% of SNe in hot SBs, 40% in warm ISM (28% in WNM, 12% in WIM)

V. Tatischeff

GCR source abundance data

- 1. Overabundance of refractory elements over volatiles
- **2.** Under-abundance of protons and α -particles
- **3. Overabundance of heavier volatile elements** (Zn, Se, Kr...) compared to lighter ones (N, Ne, S, Ar...)?
- 4. Overabundance of ²²Ne (²²Ne/²⁰Ne is 5 times solar)

See Meyer, Drury & Ellison (1997)

V. Tatischeff

1. Acceleration of dust grains

- Higher efficiency of acceleration of dust grains in SN shocks, because interstellar grains can have very large $A/Q \sim 10^4$ - 10^8 and particles with a high rigidity ($R \propto A/Q$) feel a larger ΔV of the background plasma (Ellison et al. 1997, 1998)
 - Grain acceleration
 - ii. Grain sputtering with ambient atoms
 - iii. Injection of sputtered ions with the supra-thermal velocity of the parent grain
- ISM phase where dust grains are accelerated? Ο
 - Diffuse shock acceleration occurs in ionised media (requires plasma waves)
 - ✓ But dust grains are mainly found in **cold** molecular clouds and the warm ISM (however, see Ochsendorf et al. (2015) for dust in the **Orion-Eradinus superbubble**)

Material enriched in dust grains evaporated off the SB shell and

2. Protons, α -particles and O source spectra

- Fit to Voyager 1 and AMS-02 data using a 1D advection-diffusion model with homogeneous diffusion for the GCR propagation (Evoli et al. 2019)
- Broken power law source spectra from a fit of propagated spectra to the data

Parameter	Н	Не	0
E_{break} $\gamma_{\text{l.e.}}$ $\gamma_{\text{h.e.}}^{a}$	$10 \pm 2 \text{ GeV/n}$ 4.10 ± 0.03 4.31	$\begin{array}{r} 200^{+160}_{-120} \text{ MeV/n} \\ 3.98^{+0.08}_{-0.20} \\ 4.21 \end{array}$	$160^{+40}_{-30} \text{ MeV/n} \\ 3.32^{+0.18}_{-0.24} \\ 4.26$
$\frac{\gamma_{\text{h.e.}}}{\chi^2_{\text{min}}b}$	16.0 for 13 d.o.f. ^c	7.3 for 14 d.o.f.	5.9 for 12 d.o.f.

 Table 2. CR source spectrum parameters (Eq. 2).

^a Parameter fixed from Evoli et al. (2019).

^b Minimum χ^2 from a fit of the propagated spectrum to Voyager 1 data.

^c d.o.f.: degrees of freedom.

V. Tatischeff

Journées de la SF2A

2. p and α -particles in the GCR composition

- Integration of source spectra => p & α abundances similar to those of the other volatiles N, Ne and Ar, provided that the minimum CR source energy is of the order of a few hundred keV/n
- Escape of low-energy CR from their sources (see Schroer et al. 2022)? Source spectrum differences between p, α -particles and heavy nuclei?

V. Tatischeff

3. Charge dependence of GCR volatile abundances

- Volatile element abundances in the GCR source composition depend on ionisation states in shock precursors, i.e. on ISM phases, because acceleration efficiency depends on ion rigidity (Ellison et al. 1981; Caprioli et al. 2017)
 - <u>Warm ISM</u>: photoionization precursors mainly produced by He I and He II photons from the post-shock region (Ghavamian et al. 2000; Medina et al. 2014)
 - Superbubbles: collisional ionisation in a hot plasma (negligible photoionization)

GCR source composition model

- Model of GCR source abundances fitted to data (AMS-02, SuperTIGER...) from Ο
 - ✓ Mean composition of the local ISM (B-type stars + solar system) VT, J. C. Raymond, J. Duprat,
 - ✓ Ionisation states in SNR shock precursor
 - S. Gabici, S. Recchia (2021) ✓ Elemental fraction in ISM dust - mainly from gas-phase element depletions (Jenkins 2009, 2019; Ritchey et al. 2018)

- ⇒ Preferential acceleration of the GCR volatile elements in superbubbles
- Effects possibly limiting the efficiency of shock acceleration in the warm ISM: ion-neutral damping, neutral return flux (Morlino et al. 2013)?
 - V. Tatischeff

Journées de la SF2A

20 - 23 juin 2023

4.²²Ne abundance in GCRs

- GCR ²²Ne/²⁰Ne ratio ≈ 0.35, i.e ~ 5 times the solar ratio (Garcia-Munoz et al. 1970; Binns et al. 2005)
- Contribution to GCRs of Wolf-Rayet wind material (¹⁴N(α,γ)¹⁸F(β⁺)¹⁸O(α,γ)²²Ne during He burning)? (Cassé & Paul 1982)
- GCR origin in superbubbles enriched in ²²Ne from winds of massive stars?
 - V. Tatischeff

4. GCR ²²Ne from wind termination shocks

Shocked

interstellar gas

Shocked

stellar

Fermination

shock

Contact discontinuity

Stellar

wind

Interstella

das

Forward shock

Strasbourg

- GCR ²²Ne not from enriched superbubble gas, because overproduction of ¹⁴N (main sequence): (N/Ne)_{wind}=2.6 => 5.5x the ratio in the GCR source
- More likely ²²Ne is produced by shock acceleration in wind termination shocks (see Morlino et al. 2021)
- Assuming the acceleration efficiency in WTS to be proportional to the **wind mechanical power:**
- \Rightarrow ²²Ne/²⁰Ne=1.56 in the accelerated wind composition
- \Rightarrow Small contribution to the GCR source composition: $x_{w} \approx 6\%$

20 - 23 iuin 2023

Cosmic-rays from massive star clusters and superbubbles¹³

Vieu et al. (2020, 2022a, 2022b, 2022c): detailed theory of cosmic-ray production in superbubbles from stellar winds, supernova remnants and turbulence, taking into account the nonlinear feedback of the accelerated particles
 => CR are mainly accelerated in SNRs, only 5 - 10% of CRs are produced in WTS

• Vieu & Reville (2022): explain the Galactic CR population up to hundreds of PeV

V. Tatischeff

- Composition of Galactic cosmic rays is key to understanding their origin and their effects in the ISM and in cosmology (atelier S07)
- Measured source abundances of **primary and mostly primary CRs from H to Zr** point to an origin in **superbubble environment**, mainly from **acceleration in SN shocks**, with a small contribution of acceleration in **wind termination shocks** ($x_w \approx 6\%$) to explain the ²²Ne overabundance
- More work is needed to understand the origin of the GCR refractories acceleration of dust grains in superbubbles? (atelier S10)
- CR production in massive star clusters and superbubbles up to 10¹⁸ eV?
 => Cherenkov Telescope Array, LHAASO