Detecting targets with radial velocities for their atmospheric
characterisation with the next flagship instruments
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Key message
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A core objective of flagship ESA and NASA mission at the 2050 horizon is to
characterise the atmosphere of Earth-like exoplanets

Radial velocity measurements can pre-detect Earth-like targets and will be essential
IN any case to measure planetary mass

The radial velocity signal of the Earth on the Sun is 9 cm/s and current instruments
are limited at ~ 1 m/s because of complex noises

. _J

Reaching 9 cm/s precision is the primary goal of the radial velocity community, it is
argely a data analysis problem, and there has been recent progress
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Objectives
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Detecting life outside of Earth |
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Radial velocites are key

) Mass Is essential to
interpret
E spectroscopic . Metric A:20% BW, SNR = §
: observations of 8 -
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NASA Extreme precision radial velocity report Crass et al. 2021

Roadmap to the detection of Earth-like planets with radial velocities to prepare HWO

« Musts » = requirements

* Determine by 2025 the feasibility to detect Earth-mass
planets in the habitable zone of solar-type stars

 Demonstrate by 2025 on sky precision of 30 cm/s

* Conduct precursor survey: now-2035 on 100 stars on the
« green target list »

« Wants »
* Survey as many stars as possible (« Yellow list: 100 stars »)
* Least estimated cost

Green target list (106 stars)

Spectral types F7—K9 and
vsin(i) < 5 km/s

Close (On the HabEXx ‘deep

survey’ or ‘50 highest priority

stars’ lists (Gaudi et al.
2020), or on at least 2 other
mission concept target lists
(including LUVOIR-A,
LUVOIR-B, HabEx ‘master
list,” Starshade Rendezvous)
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NASA Extreme precision radial velocity report

Histogram of obtained signal to noise ratio for 100

Simulation with different
priority stars assuming they all have an Earth
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Excerpts from the EPRV report

Telluric line contamination is assumed to be limited and correctable

Weather conditions are uncorrelated.

We do not account for errors due to RV contamination from additional planets in the same
planetary system

Stellar variability is assumed to be adequately characterized and mitigated during the data

extraction of RV signals such that the remaining signal due to stellar variability is uncorrelated
in time.

Extreme precision radial velocity is very useful if these problems can be
mitigated




Noise In radial velocities is not white

Radial velocity measured on the Sun
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Key ideas

stellar and instrumental effects change

Planets induce a pure Doppler shift the shape of the spectrum

—— Integrated quiet stellar surface, no spot (1)
—— Spot minus local quiet surface (2)
—— Integrated stellar surface with spot = (1) - (2)
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Steps of RV analysis
1 dimensional Radial velocity

Time series of Raw spectra | Reduce to Extract .
spectrum Indicators

Sum of CCF and bisector

Normalized flux

FiIUX

=3,000m/s
04 Vv / — Integrated stellar

surface with spot

= BISbottom
01+ | | b i BlStop

1 1 1
4,999.0 4,9995 5,000.0 5,000.5 5,001.0
Wavelength, A (A) Wavelength lag

Aflux
L —

Modelling: which noise properties, priors? Are planets detected? Which ones?

10- |  Error bars with fitted jitter , a
I\ Periodogram
— ¢ Measurements 06 N ABIS
u f Ve AlogR
E 0 i RV
— 9 o4l i
= § < 3 #
& - . : 4 {
101 —— GP prediction + Fitted planetary signals & {
- —— GP prediction 02~ &8 LT AN/ SN il
- P h AVANY BN, R N
' M Ml 4 i;i . \\ Yy A ZAN BT BENY. \ Y
0 J'?-{s‘!.'? palton, i A AU NS W/ LN ——
'GI E T (days) b
~ 3 Y
Ei 03 - § . 9 -
=2, " | : 10
0 2 02 ;
< ‘g
0.1 7 i 8
AL b ol T
SRRAY PR A7
0_1' 0 L ?!;.'1" AW Y Y , g S
= 10! 102
— Period (days)
X
C O-O_ p— " " " "
(@) I—
E 3 Hara & Ford, Annual Reviews of statistisics and Its
5 ' |

2-'0 5 Application: what are the problems to solve”?

Time (days)




An optimal exoplanet detection criterion

700 -

1000 radial velocity datasets with 0,1 or 2
planets
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» Analysed with the same model
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CONTINUOUS MULTIPLE HYPOTHESIS TESTING FOR OPTIMAL EXOPLANET DETECTION 21

When
;s can

0; belongs to several boxes, there might be several ways t
yielding different number of correct detections. Suppose
components, one in O1, one in Oy, with a non empty inter
parameters are such that 6; belongs to ©; N ©s and 6»
whether we associate 6; to ©; or O, we have two or only
case, we choose the injection which leads to as many corr

We denote by m the maximum number of different ;s tl
note by A¥, the region of parameter space with k componen
component in each of the ©;,i =1..m, m < n.

If k planets are truly present in the data, n detections are ¢
means that the true detections of min(k,n) — i are missed. W
adding a term —S3(min(k,n) — i) whenever it happens. The e

19)

Eoy[U{a,(8,m)}] =—nap(0]y)

(20)

+ [=(n—1)al 4 — (na+B) (1—La:)] p(1]y)

21

- [—(n —2)al 4z —

(22)

(23)

[Ee

-

(n—=1)a+B)L4z — (na+28) (1 —

k
(—(n—i)a — (k—i)B)[ 4+ — (na + kB) (1 ->
=1

—(n—i)(a+ B)Isr —n(a+B) (1 — ZIA;-)]j

=1

—i)(a+B)ynr —n(a+ B) (1 - ZI,,"“

i=1
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definition of v}, means that v

the argument is identical if v,, is replaced by v/,.
Let us fix z > 0. The constrained problem is

jming the detection of n >0 comp en w1th parameters in ©;
nsi s . “bg i cl
ters 4 G , @ e

: such £o

the fact that we can t claim twice the

e = 1...n, the

22

(28)

+ [zn: —(n—i)(a+ B)sr —n(a+p) (1 - zn:IA_"'m) — (Mmaz — 7
i=1

i=1
Re-arranging the terms, we have

Mmax

(29) Ey,[U {a,(8,n)}] = —na + (a + B) ZHA -B Z kp(k
=1
(30) = —(aE[FD] + BE[MD))

where E[FD] and E[MD)] are the expected numbers of false detections and 1
when claiming the detection of components with parameters in Oy, ...,0,,,
31) E[FD]=n-) il4,

i=1
(32) EMD]=n-Y il4,,

i=1
where 72 := "= kp(k | y) does not depend on the number of componer
suming that a # 0 (or equivalently a > 0, since « is non negative), we ca
by a. Denoting by v = 3/a, without loss of generality we can maximize

(33) Eoy[U{a,(0,m)} = —n+(1+7) ) ila, —yn.
i=1
where ,,—1 dol\n wnnt Ancmnnd An tha assennhae AF wlanata

CONTINUOUS MULTIPLE HYPOTHESIS TESTING FOR

LEMMA
. Denoting |

where [1,n]; is a draw of j indices without replaceme

(36) Iy= )

Ie,,l/\eh/\t../\

(34) kyyeosk; €[]
Then
where Ig, i. . I
We begir 37 Z Io, = Z To ¢
i=1 i=1j=0F,,.., k;i€[1,n];\{i}
REMARFK

In this sum, the term Ig, pno,A...A0, appears n times, t

sen betweer . ! .
pear n — 1 times, so we obtain the desired result.

tho navamoa

ENCE OF'

be guaran

PROOF. With the notation above, we have seen that u, is increasing, v, is decreasing, s denote by
and v,_1 — v,, is decreasing. Furthermore, by hypothesis u,, — u,,—1 is increasing, which by
-l is decreasmg In the following, we reason on v,, but

imensional

I and R (¢

'} where T|

min v,
n

while the maximum utility problem can be

min

Since u, is increasing, there is a highest ng
constraint, i.e. such that u,, <= 2. Since
problem is found for n = ng, for any con
choose 7y such that the solution of the maxi
ration satisfying the constraint. We show th
to a larger value of v,, + Lag,,.

From our hypotheses, we see that the rat
n < ng, we will have

Up + —U,
v

if we take
U
47) YZ—
7
Note that if v,,, — v, +1 =0, since v, — Vp,.
also v,, — v,+1 = 0, and we can always re
such that v,, — v, 1 # 0. For n > ng, we w

1
Up + —Uy
v

if

Choosing 7y between those two bounds g
increasing function of z.

As long as the sequence (u},; — uj)n-
the constrained problem have the same solt
but can be ensured under the following con

LEMMA E4. If¥n >0, Jig, Vj=1.1

subject to u,, <=1z

ssarily unig
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PROOF. Let us suppose that 3n >
explicit expression of u,,, the inequality is equwalent to

n+1

(48) Zlen Zfen+1<z:[en l—z[en

By hypothesis, Jig, Vj =1..n—1,0;, N 6'?_1 =

n n+1
(49) ZIQ:'— z IenH<Ienn+ZI9n l—§
i=1 i=1,i#1, 3

The term Ien 1+ Z Igr-1 isasumof n Ig, with disjoint ©;. By di

hand side of the mequallty is less than or equal to 0 and the left hanc

greater than or equal to 0, which is absurd.
If¥i=1.n+1,3j=1.n-1,0"N 8;-’_1 # (). In that case

[1,n] ©F N (9_’7.’_1 # 0, otherwise due to lemma 3.2 this would lead |

If the condition of Lemma E.4 is not satisfied one can find a counte
uf, < u¥—u?_, and the equivalence of utility maximisation and optir
is not guaranteed. Finally, we have the desired result.

THEOREM E.5. Let us consider a dataset y and suppose that it
arability at all orders, n = 1...ny,, then there exists an increasing
that (63) and (64) have the same solution, and a function ~'(z) > 0
have the same solution.

PROOF. Under the hypothesis of separability, by lemma E.4, (
increasing, and by lemma E.3, we have the desired result.

APPENDIX F: OTHER DEFINITION OF MISSED DE

In this appendix, we show that the optimal procedure is similar i

defined as in Hara et al. (2022b).

DEFINITION FE.1 (Missed detections: other definition). If n com
in fact there are n’ > n components truly present in the data, we cot
tions.

In that case the expected utility is

1 such that %n+1 — Un < Un — un—1. Replacing by the

24

Let us consider ©,+1 € T'. The solution to (Pr+1) can be written as

38 ar max Ie,.,+ ) Io,.
©8) geleT\e.,“,...eneﬂen,, On i1 Z 6;

Vi j€[1,n],i#5,0:10;=0

Either Vi € [1,n], 621% N Or = () then thanks to (P1), for E=T" and D
T™ Vi, z; ¢ O7 11}

3 I i — (E)'} i=1..n
@9 Mgeler\en.{?%nd\emz 0. = ()=t
Vi je[l.n],i£5,0,10,=0 =1

Asa consequence,

(40) arg max ar

n
ax Iy . + Io. = (07,
O, 11€T\Ur_,0 0,eT\0,,, D To.=(6F

m
0,ET\Op 41, 1
Vi,j€[1,n],i#5,0:n0,;=0 =
up to a permutation of the indices (see remark B.2). If 3i € [1,n + 1],Vj
= () then the same argument applles and the solutlon to (Pn+1) is (8”

Letl 1 PR ] n o .

IIla n]] ¢ CONTINUOUS MULTIPLE HYPOTHESIS TESTING FOR OPTIMAL
cases a(
Theorem E. 1 assumes component separability (Definition 3.3)
Wer than necessary for some of the lemmas, and is not made by de
throughout the appendix that the ©;s are pairwise disjoint. Tl
LEM Eq. (4), we canwrite n — 37 jla; =31 FIPe,. We consic
and cer, and define
compor n
(41) un =Y FIPey
PRO i=
intersec Tmax
! —
gions ( (42) Uy 1= Z (k—n)pk|y) ; vVo=A—n+
k=n+1
le;,, 4 "
where 1 = y). The sequence u,, is the expected m
and v/, are the expected number of missed detections for the mi:
In th E.1 and 2.3, respectively (see Appendix A for details). Note that
n but we chose not to make that dependence explicit to simplify n¢
THE LEMMA E.2. Yy in the sample space the sequence (1
arabilit ’ :
(Vn)n=1.n,... and (V;)n=1.n,,.. are decreasing.
(13) ha
T PROOF. Let us suppose that there exists n such that u,, 1 <1
e
and mi¢ ntl

n-l—l—ZIenu <n—ZIQH

2nt to
n+1

1 +ZIQH < ZIen+l

yy ip an index such that ip = arg max;—1_,+1 Ig,+

0, Eq. (48) can be written

n n+1

28

G5 +(>

(36)

_(n.—'l‘)aIA:-+l — no (1 —EH:IA:-H) —5] p(n+1|y)

=1

(57) + Z —(n—i)alsr —na (1 — ZIA:'max) — (Mmaz — n)ﬁ] P(Nmaz | Y)
Li=1 i=1
Re-arranging the terms, we have

Nmaz

(58) Ey, U {a,(8,n)}] = —na +aqu,, -8 Y (k—n)p(k|y)
k=n+1
(39 = —(aE[FD] + BE[MD])
where E[FD] and E[MD)] are the expected numbers of false detections and missed detections,
respectively.
(60) E[FD]=n- Z ilga,
i=1

> -

k=n+1

(61) EMD] = n)p(k|y)
Assuming that o # 0 (or equivalently a > 0, since « is non negative), we can divide
Eg. (59) by a. Denoting by v = 3/, without loss of generality we can maximize

Nmaz

62)  Eg,[U{a(®1,...0,),(6,1)} :—n+Z]1A 7 3 (k—n)p(k|y).

=1 k=n+1
The expected utility is
(63)
n Mmax
o T (i oD N1 NN Ay o N L Ny

Number of true detections

onstrail

an incre
d proble
roblem (

al:exoplanet detection criterion

etection of a given component Furthermore, if a
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An optimal exoplanet detection criterion

( )

- Mathematical proof of optimality 700-

of a new detection criterion called « True 600 1Up to 3 times more
True deteM
500 -
/4

inclusion probability » (TIP)
400 7Y

» Optimal in a general case

—— Periodogram and FAP
Periodogram and BF

Hara et al. 2023, Annals of Applied Statistics

300 -

Number of true detections

(In revision) B 11 and FAP
\ Hara, Unger, Delisle, Diaz, Ségransan 2022) 500.- 4 — 'Fllpand BF
N ® PNPandFIP
Bayes factors and FAPs 100 - FIP periodogram + BF

—— FIP periodogram + FAP

« Optimal? 0+ S - -
. : 10° 101 102 103
—P New criterion demonstrably optimal Number of false detections
» Do not encode where the planet is

— Encoded in new criterion In a collection of independent detections made
» Are not defined on a very intuitive scale with TIP 99%, on average 99% are correct
—» New criterion is an actual probability 90% 90%

50% 50%




Understanding stellar variability to

p Data analysed with a statistical
+—— > model supposed Gaussian and
stationary with qualitative parameters

Detailed physical models

Analysis of solar data

Build the statistical model from a physical one

12
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J=all Hara & Delisle 2023
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Understanding stellar variability to

Detailed physical models
Analysis of solar data

rix, and

Appendix A: Covariance and cumulants

Appendix A.1: Cr=i==== = ths mommanl mmmnis
point correlation function. For a
order 3 and 4 are zero. Our main rcie

To establish Eq. (A.22), we will u:  computing the p F2 72757 s v seeisses “ = Vm(v)T 6CCF
ante i . the intrinsic area and P(x) 1 G voc i cocd § B= 'm(v)' SCCF(v)d
lants, explicited below. fined in Eq. (X227 darkening effect I(x). We w. 4 5m 2’2“" 26 cosd + cos”icos™d cos 26 (B.3T) Ve

m(v)dv,
In this appendix,
and autocovarian
and z(f). These ex Theorem 1.
mula for cumulan

N

Meunier+ 2010,

o

09

N

Vitesse radiale (m/s)

anipulation of ¢

nterval [-L/2,L,
pearance follow 1

o infinity (y*(¢) i
spots such that #;
ion of parameter

n=

And we have

Ky (¥(t1), Y(t2), ..., Y(1,)) =

The covariance is the 2-point correlation function. When
Gaussian processes they are stationary, we have «,(t,r2) =

- Ky(|t; —1;]) they are equivalently represented by the Fourier trans-

form of the kernel k(7): their power spectrum density (PSD).

. Similarly, under the hypothesis of stationarity of the process, the

quantity k,(t,f + T1,...,t + T,-1) does not depend on t. Consid-
ering the n point correlation function as a function of the n — 1
variables 7y, ..., 7,_;, we can define the polyspectra as the n — 1
dimensional Fourier transform of «,(f,f + T1, ..., + Tp_1).

The proof of Eq. (A222)) can be modified straightforwardly to
prove a more general result,

pects could be explored simultaneously in a practical way.

In the case where patterns appear with a constant Poisson
rate, and the distribution followed by y(#) does not depend on
time, y(t) ~ ), the stochastic process y(f) is stationary. We

Theorem 2. Let us consider n rt

(ii) If there is at least two ind,
are independent, k(Y, ..., Y, ..., YJ‘

(iii) If N is a random variable
tion of parameter A, k(N,N...,N)
of times N is repeated.

(iv) Law of total cumulance. Si
variable Y and we can define the

knowing X. Then

(Y, Yy)= ) Kkk(Yi:i€ B

In the partition {{1},{2},{3}} we }
{3}. In the partition {{1}, {2, 3}} we.
For n = 3, the law of total cumula

k(Y1,Y5,Y3) = k(k(Y, Y2, Y3 | X))

variables Y;

where features ap] as a function of the positio

In the following, we establi ., o000 gas

ti=T/2andt,+7 ¢ and latitude &) on an in¢ g(t,i,6, B) = co + ¢1 coswt + 2 ¢
features in this in neglect the F/Fy term in Ec

parameter A =

j‘ We model the surface of

parameters drawn a spot or facula is an infen where ¢y, ¢y, ¢, 51, 52 are coeflic
Thanks to the radius. For the sake of sim A. As a concluding remark, let |
Theorem [K.2.7), 1 refer to a spot, but the rea Darkening is in power of J, itse

k(Y1,..Yy |N) =

if and only if 7

k(Y1,...Yu | N) =

consider a direct frame x, y. Regardless of the order of the Li
of the observer and y, z defi ¢an always write g in the form
Let us first assume that |

sidering that the measured cross
weighted sum of the local stellar

When extracting radial-veloc
CCF technique, one models the C

= vy =—singx + cos ¢y
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VO ) Kn(X1(x1), X2(82), o0y Xn(1,)) = where 1 € P(n) means that 1 spot, such that its position i yo i
a), Yp)) = sible partitions of indices of I . - . 512 o
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Kkgran(T) can be decomposed in two terms

1 N e T

the rotation period (one hour vs 25 days on the Sun), it can
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Phase shifts and faculae/spot ratios

Detailed physical models Hara & Delisle 2023 With

Analysis of solar data physical parameters
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(In review)
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Application: super-Terres dans la zone habitable
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Spectrum of Earth observed as an exoplanet\

5 10 15 20

Instruments for the identification of life
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Generate realisations of the FENRIR model

(1) Draw times at which features appear according to a variable rate A(7)

—0—0—00 0 00 @ A 4 & O @ — Time

(2) If a feature appears at time 7 draw its parameters y from distribution p(y | 7, 1)
Where 77 are the stellar parameters

y—> (3) Add g(r — £, y) to your photometry time series and /(¢ — t,, ) to your RV time series
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From the physical model, compute the of the likelihood function

Hg(t — 1, Ph(t =1, )A@)p(y | ,n)dedy =

ohotometry RV iIndicator
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Objectives

Characterizing Earth-analogs }

Exoplanet [ Detecting life outside of Earth

observations /

Spectro-imaging: LIFE (ESA),
LUVEX (NASA), JWST),

Characterization of exoplanetary SCS@ELT

atmospheres

LUVOIR

Observer

Detecting life outside of Earth transiting

Reflected light:
HWQO, NASA
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atmospheres (chemical
composition, reflectance,
variability)
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Detecting Earth-like planets,

mass, radius, and orbits
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Radial velocites are key

Metric A: 20% BW, SNR =5
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Mass Is essential to
interpret
spectroscopic
observations of
atmospheres
(Batalha et al. 2017,
2019)

The yield of atmospheric
characterization is greatly
improved if Earth like planets are
detected in advance, require
targets < 20 parsec

+ Results obtained faster, more time
for characterisation

+ Mitigates the risk of the missions
+ True for other kinds of planets
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