

Solar wind - planetary magnetospheres interactions: Recent BepiColombo observations

Lina Hadid

Laboratory of Plasma Physics, École Polytechnique/CNRS, Palaiseau, France Lina.hadid@lpp.polytechnique.fr

SF2A, June 20 – 23, 2023

Planetary magnetospheres

Magnetosphere:

The region of space influenced by the planet's magnetic field.

Anatomy of a magnetosphere

Credit: Fran Bagenal & Steve Bartlett

Nature of the interaction between planetary magnetospheres and the SW

HUGE range of scales !

The solar wind: a broad parameter space !

Solar wind properties and scales of the planetary magnetospheres

Adapted from Bagenal+2013

Adapted from Sahraoui+RMPP, 2020

Magnetospheres of Venus and Mercury

Mercury: Mini-magnetosphere, the innermost planet of the heliosphere

Unique coupled system at Mercury

Luhmann+1991

The BepiColombo ESA/JAXA mission

BepiColombo's cruise phase

ESA | JAXA

bepicolombo

Person et al., Nature Communication, 2023.

BepiColombo's 2nd Venus flyby on August 10, 2021 and ion observations

- Evidence of Oxygen and Carbon ions in the flank of Venus magnetosphere in the vicinity of the MPB.
- The observed abundance of C⁺ with respect to O⁺ at most 30%
- Surplus of O⁺ inconsistent with only CO group ions source (additional H₂O ?)
- Average total flux ~ 4 +/- $1x10^4$ cm⁻²s⁻¹

Hadid+, under review

In the ionotail of Venus around 100 Rv by the SOHO spacecraft $\rightarrow \sim 10^3 \text{ cm}^{-2}\text{s}^{-1}$ [Grünwaldt et al., GRL, 1997]

In the magnetosheath flank of Venus around 2 Rv by the VEX spacecraft $\rightarrow \sim 10^5$ cm⁻²s⁻¹ [Nordström et al. JGR, 2013]

Planetary heavy oxygen and carbon ions

BepiColombo 2nd Mercury flyby: June 23 2022

Hadid+, in prep

BepiColombo 2nd Mercury flyby: June 23 2022

Downstream and Upstream of Mercury's magnetosphere

Evidence of planetary heavy ions (m/q >= 16)

m/q [amu/e]

MSA measurements during BepiColombo Mercury flyby #2 (June 23 2022) reveal :

In the inner magnetosphere

Solution Evidences of He²⁺ and He⁺ ions of planetary origin in addition to H⁺ population (\sim 6 keV) Solution Below 1 keV, He⁺ dominate over He²⁺

Upstream of the magnetosphere

Sevidences of H⁺ reflected from bow shock

 \checkmark Main population has bulk energy of ~3 keV (diffused ion population ? [Glass et al. in prep])

✓ H⁺ flux decrease away from bow shock

BepiColombo Mercury #3 flyby: June 19-20 2023 3

