# Preparation to future long-term space missions for exoplanets high contrast direct characterization

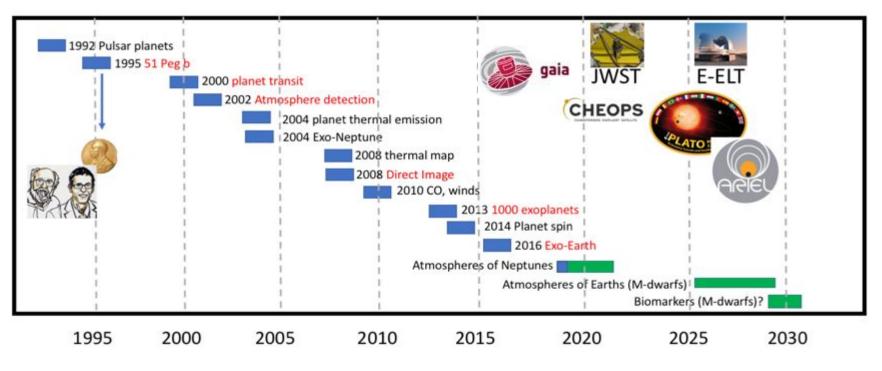
based on a biased view towards high contrast imaging (HCI)

- "Optimal Exoplanet Imagers" workshop (Leiden, Feb 2023)
- Presentation to ESA Science and Tech directorate (May 30th)

and important complementarities and synergies with long baseline interferometry

## Take-away messages

High contrast exoplanet characterization is a major long-term goal


Programmatic way to reach the goal under discussion (missions, collaborations, instruments) including intermediate steps and complementarities

Technology maturation to be worked-on now to be ready for programmatic decisions in 2030 to be organized coherently (as various scales) a wealth of expertise in Europe

Important synergies

HCI / interfero ; ground-spaceNeed for significant improvement of wavefront controlHigh potential of the high contrast-driven dev for other applications

#### A Revolution in Exoplanet Research (European perspective)





## Next steps

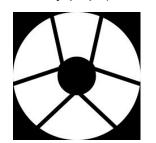
After the wealth of RV and transits for detection, statistics, and first characterization

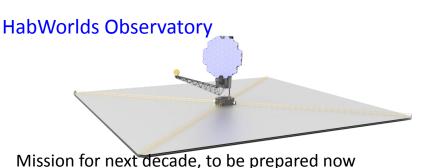
Probing some diversity around bright stars and/or larger separation: ARIEL, PLATO

Characterization of low mass planet samples up to probing the conditions of life

- on brightest, most favorable cases
- long deep exposures
- getting rid of the primary, fundamental limitation: stellar flux




## Programmatic context: next steps ?

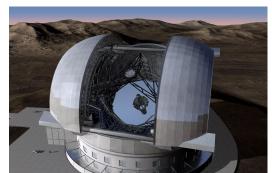

LIFE

+

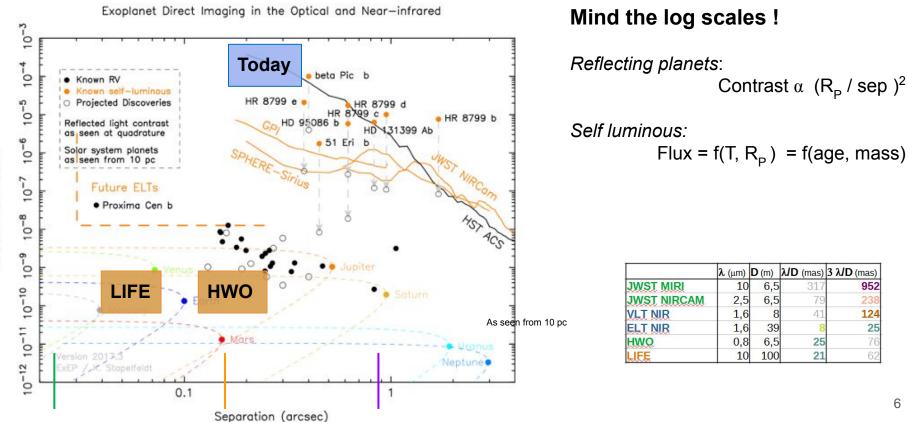


2-DM wavefront control for high contrast demonstration (on an unfriendly pupil)






While high contrast is an important part of **ELTs** on the ground


Life collaboration

paper serie





## Global direct imaging roadmap



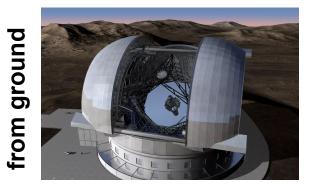
Contrast to Host Star

## Complementarity UV-NIR vs MIR

### From Quanz presentation Voyage2050



### Scientific complementarity:

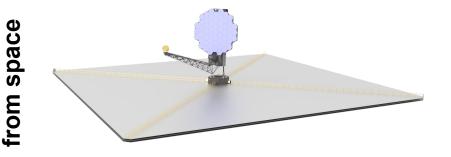

albedo, polarization, hazes/clouds, shortest separations

thermal probing, integrated atmosphere, different molecules

### **Commonalities and synergies:**

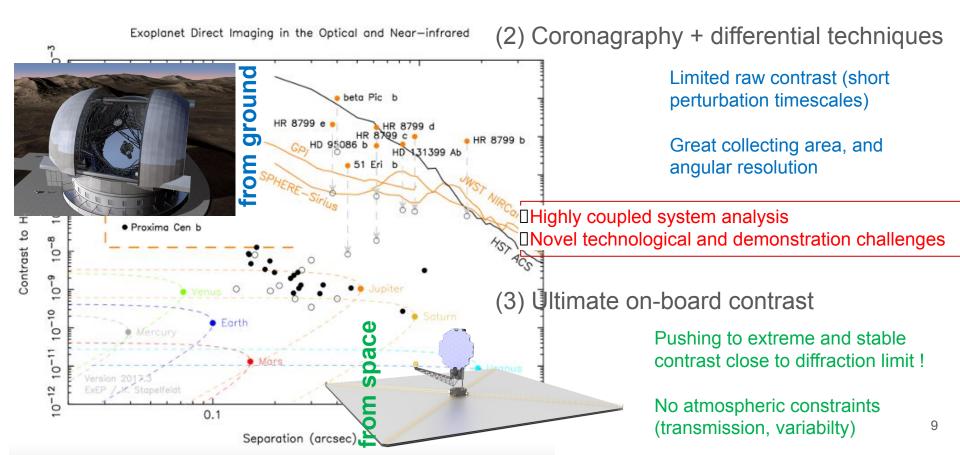
- common community
- scientific preparation (targets, spectra, interaction with disks, dynamics, ...)
- system analysis: WFS&C, (auto-)calibration, nulling/coronagraphy error budgets and tolerancing, post-processing, novel stability and optical specs, integrated optics, detectors 7

## Complementarity HCI ground vs HCI space




### Scientific complementarity:

Better angular resolution  $\rightarrow$  HZ around M-dwarves


### **Commonalities and synergies:**

- common community
- scientific preparation (targets, spectra, interaction with disks, dynamics, ...)
- system analysis: WFS&C, (auto-)calibration, extreme adaptive optics, post-processing, novel stability and optical specs, integrated optics, detectors



Deeper contrast  $\rightarrow$  HZ around solar-type stars Broader bandwidth  $\rightarrow$  finer spectral coverage and characterization

## Complementarity HCI ground vs HCI space



# Missions, technology, roadmap

need to organize on long-term scales

Techno maturation and programmatic decisions have intrinsic distinct timescales

US HWO on-going plan de facto triggers/defines some milestones and sets some important opportunities/boundary conditions

Lots of synergies and potential positive resulting know-how and products for various applications

Lot of work ! in which Europe has an important role to play

# Missions, technology, roadmap

need to organize on long-term scales

### Programmatic aspects:

- ESA will issue its "Long Term Plan" in November this year
- Exoplanet characterization strongly present in Voyage2050 survey
  - characterization in the mid-infrared (Senior Committee Report)
  - possible European contribution to HWO for an instrument

### Techno maturation activities

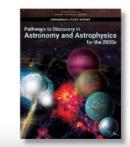
- HWO drives techno maturation by 2029 (see below)
- Possible contributions rely on demonstrated expertises
- Contacts desired at various levels (ESA, national agencies, coll.)

### **CNES** prospective starting !

community invited to express interest by next September

### ESA poll for emerging techno

WITSO workshop Nov 2023


Dedicated workshop on high contrast early 2024 ?

## **Astro2020 Primary Recommendation**

 Infrared / Optical / UV space telescope with ~ 6-m inscribed diameter to search for life on exoplanets and enable transformative astrophysics

## **The Habitable Worlds Observatory**

- Primary technical requirements for coronagraphic survey are:
  - System-level stability at ~ picometer-level
  - Coronagraphic contrast ≥ 10<sup>10</sup>
- Strategic guidance







29

Mark Clampin AAS meeting Jan 2023

## The Habitable Worlds Observatory: The Big Picture

- Build to schedule: Mission Level 1 Requirement e.g Planetary missions
- Evolve technology: Build upon NASA investments i.e.
  - JWST segmented optical system, Roman coronagraph, & Sensors
- Next Generation Rockets: Leverage opportunities offered by large fairings to facilitate mass & volume trades
- **Planned Servicing**: Robotic servicing at L2
- Robust Margins: Design with large scientific and technical margins
   Mature technologies first: Reduce risk by fully maturing the technologies prior to development phase.

## GOMAP

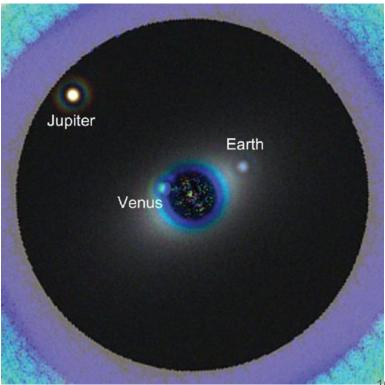
**Great Observatory technology Maturation Program** 

**Stage 1: HQ Preparation** *Establish GOMAP plans and policies* 

Stage 2: Habitable Worlds Observatory Concept Maturation Study Analyze architecture options; Mature enabling technologies;

with a Science Techno Architecture Review Team (START) including international ex-officio representatives

**Stage 3: Evolved Pre-Phase A for Habitable Worlds Observatory** *Establish mission architecture; Execute design trades; Mature technologies; Maintain technical capabilities for Future Great Observatories (FGOs)* 


Mark Clampin AAS meeting Jan 2023

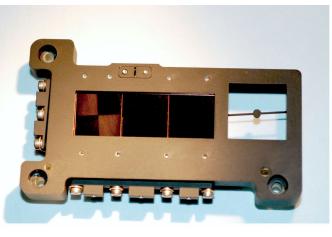
# HCI in Europe

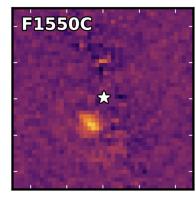
# Europe has been involved from the very beginning

- series of first papers showing it is indeed possible to deal with diffracted light at level necessary for solar system twin
- this work was done by people working on ground and space HCI, from Europe and the US
- was still missing important steps like WFS&C and stability, but shows the know-how to make it happen is there


Dalcanton et al. 2015 N'Diaye et al. 2016




## HCI community in **Europe**

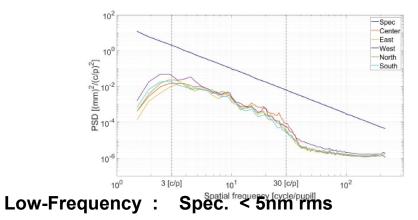

- Europe has a high level of HCI research
- Very active exoplanet community in general (observations, modeling, spectral analysis, instrumentation)
- Examples of excellence in HCI instrumentation in Europe:
  - JWST coronagraphs
  - RST mirrors
  - coronagraph development
  - experimental research and lab demos
  - post-processing solutions

# Institutions involved in **HCI instrumentation from space**

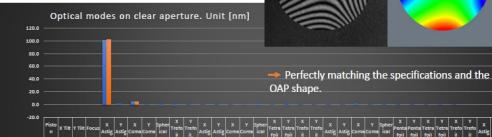


## JWST coronagraphy



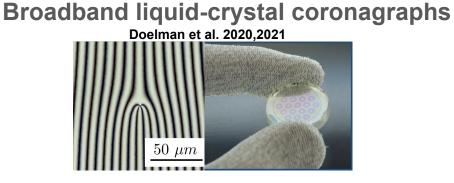



### ROMAN CGI / Off-axis parabolas


934 754

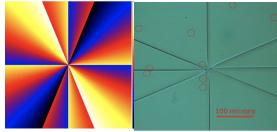
383 213 33 -147 -327 -508

Mid-Frequency Spec. < 2nm rms




| Zernike aberration<br>RMS [nm] | Specifications | Results |
|--------------------------------|----------------|---------|
| Astig 3x                       | 102            | 100.5   |
| Coma 3x                        | 3.9            | 4.1     |

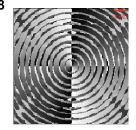



Coronagraph development

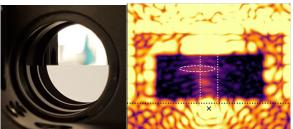
Technological development

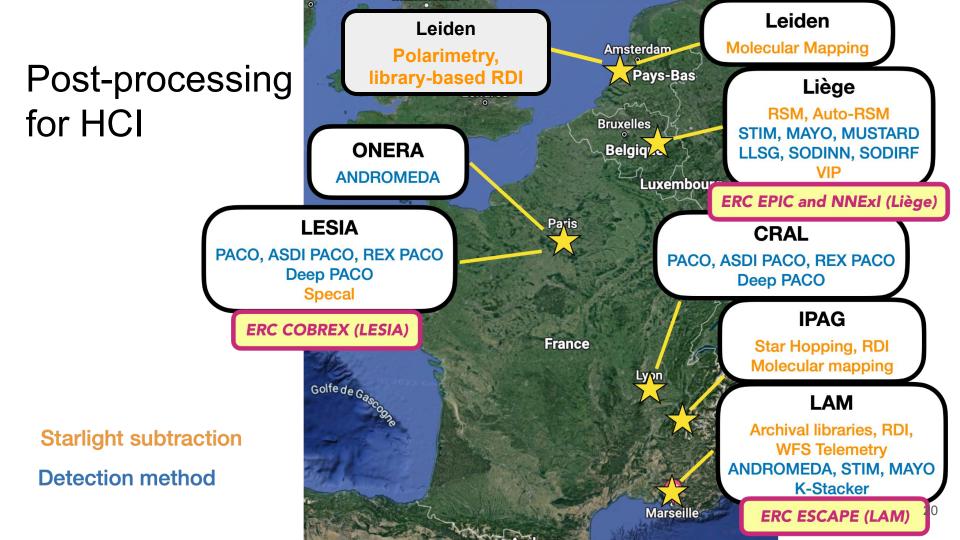


Wrapped vortex coronagraph


Galicher et al. 2020




### Active coronagraphs


Kühn et al. 2018





PAPLC Por et al. 2020





## HCI in Europe

Many more activities in Europe!

Table lists summary in (now outdated) table from Snellen + Snik et al. 2020 Voyage 2050 white paper

| Large space<br>telescopes                | <ul> <li>Euclid high precision optical telescope (Wachter and Markovic 2018; Wallner et al. 2017)</li> <li>ESA deployable mirror development (Marchi et al. 2017)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Adaptive Optics                          | <ul> <li>SPHERE extreme AO system: (Fusco et al. 2006; Petit et al. 2014; Beuzit et al. 2019)</li> <li>The très haute dynamique bench (THD; Galicher et al. 2014, Baudoz et al. 2018)</li> <li>Using 2 DMs for phase/amplitude control (Mazoyer et al. 2017)</li> <li>ESA active optics developments (Hallibert &amp; Marchi 2016; Laslandes et al. 2017)</li> <li>Deformable Mirror development (Charlton et al. 2014)</li> </ul>                                                                                                                                                                                                                                                |  |
| Coronagraphy                             | <ul> <li>4QPM coronagraph for JWST (Boccaletti et al. 2004, Baudoz et al. 2006b)</li> <li>APLC coronagraph (N'Diaye et al. 2015, 2016a)</li> <li>Coronagraph optimization (Carlotti et al. 2014)</li> <li>AGPM/Vortex coronagraphs (Forsberg and Karlsson 2013; Delacroix et al. 2013)</li> <li>Advanced liquid crystal coronagraphs (Snik et al. 2012, Doelman et al. 2017; Por et al. 2018; Snik et al. 2018)</li> </ul>                                                                                                                                                                                                                                                        |  |
| Wavefront /<br>electric field<br>sensing | <ul> <li>SCC (Baudoz et al. 2006a; Galicher et al. 2008)</li> <li>ZELDA Zernike WFS (N'Diaye et al. 2013, 2016b, Vigan et al. 2019)</li> <li>vector-Zernike WFS (Doelman et al. 2019)</li> <li>Pyramid WFS (Ragazzoni et al. 2017)</li> <li>Segmented space telescope phasing (JWST+LUVOIR; Leboulleux et al. 2018)</li> <li>Speckle nulling (Martinache et al. 2014)</li> <li>COFFEE phase diversity (Paul et al. 2017), incl EFC (Por &amp; Keller 2016)</li> <li>Phase-Sorting Interferometry (Codona and Kenworthy 2013)</li> <li>Asymmetric Pupil-WFS (Martinache et al. 2013)</li> <li>vAPP fpWFS (Bos et al. 2019)</li> <li>QACITS algorithm (Huby et al. 2015)</li> </ul> |  |
| Spectroscopy                             | <ul> <li>High-contrast imaging + High-resolution spectroscopy: Snellen et al. (2014, 2015), Vigan et al. (2018)</li> <li>SPHERE microlens-based IFS (Claudi et al. 2006)</li> <li>Slicer IFS: SINFONI (Thatte et al. 1998), HARMONI (Thatte et al. 2014)</li> <li>SCAR coronagraph + single-mode fiber spectrograph (Haffert et al. 2019; Por &amp; Haffert 2019b)</li> </ul>                                                                                                                                                                                                                                                                                                     |  |
| Polarization<br>techniques               | <ul> <li>Polarization-based 4QPM and VVC coronagraph (Mawet et al. 2006)</li> <li>Liquid-crystal coronagraphy + polarization filtering (Snik et al. 2014b)</li> <li>SPHERE-ZIMPOL (Schmid et al. 2018)</li> <li>Advanced polarimetric techniques: Snik &amp; Keller 2013; Snik et al. (2014a)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                          |  |
| Detectors                                | MKID detector development for visible light: Baselmans et al. (2017), Bueno et al. (2018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Astrophotonics                           | <ul> <li>Photonic reformatting - NAIR (Harris et al. 2018)</li> <li>3D printed microlenses on single mode fibre IFUs (Dietrich et al. 2017; Haffert et al. 2019c)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| System design                            | SPICES HCI space telescope concept (Boccaletti et al. 2012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Data-reduction<br>techniques             | <ul> <li>Spectral Differential Imaging (Claudi et al. 2008, Vigan et al. 2010)</li> <li>Principal Component Analysis (Amara &amp; Quanz, 2012)</li> <li>ANDROMEDA (Cantalloube et al. 2015)</li> <li>ALICE (Choquet et al. 2014)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |

## Experimental research and laboratory demos for HCI

- theory  $\rightarrow$  modeling  $\rightarrow$  lab demos
- requires full loops with sensing & control, knowledge of optical model → crucial for transition to real instruments and definition of flight hardware
- HCI instrumentation research requires very well calibrated optical testbeds





## THD2 testbed / Paris

- space-based applications
- ground-based applications
- been around for 10+ years

### **CIDRE testbed / Grenoble**

- ground-based application
- alternative coronagraphs, wavefront shaping

### **SPEED testbed / Nice**

- segmented telescope emulator
- coronagraphs
- ground-based applications

### **MiTHIC testbed / Marseille**

• recently: spectroscopy for HCI (ground)

# Future strategy

## We need a pro-active engagement with HCI

### Further community building:

- Coordination between ESA and academic community for early participation in maturation studies
- Continuous discussion with the agency
- Have a dedicated contact point for HCI?
- $\rightarrow$  Involvement on science side

### Prepare for technology roadmap:

- Identify possible areas for optics and tech development
- $\rightarrow$  Involvement on technology side

Concluding message to ESA, May 30th

# Start a European development program for technology validation

- 1. Coronagraphic systems
- 2. Wavefront sensing and control
- Integral field spectrograph + spectroscopic data analysis
- 4. Polarimetry (science and technology)
- 5. Data analysis algorithms
- 6. Precision optics and detectors
- 7. Photonic technology

### Wishes from HCI community:

- clear and visible long-term interest, coordinating on-going forces
- intermediate milestones for critical technology maturation (driven by HCI, useful for other applications)
- a strong position for upcoming opportunities, coordination with international community

# Take-away messages

ESA long term plan in November

High contrast exoplanet characterization is a major long-term goal

Programmatic way to reach the goal under discussion (missions, collaborations, instruments) including intermediate steps and complementarities

### Technology maturation to be worked-on now

to be ready for programmatic decisions in 2030 to be organized coherently (as various scales) a wealth of expertise in Europe

Important synergies

HCI / interfero ; ground-space Need for significant improvement of wavefront control Important potential of the high contrast driver for other applications

**CNES prospective starting !** 

community invited to express interest by next September

### ESA poll for emerging techno

- WITSO workshop Nov 2023
- Dedicated workshop on high contrast

early 2024 ?