

Ice inventory in highly extincted star forming regions: First results of IceAge, a JWST Early Release Science program

Jennifer Noble, for the IceAge team

Melissa McClure (PI), Adwin Boogert (co-PI), Harold Linnartz (co-PI)

JUNE 20TH, 2023 STRASBOURG, FRANCE

Ices and the star formation process

NASA, ESA, CSA, STScl; Joseph DePasqu Bill Saxton, NRAO, L. I. Cleeves

NASA, ESA, CSA, STScI; Joseph DePasqu le (STScI), Anton M. Koekemoer (STScI), Alyssa Pagan (STScI).

(Pre-)stellar core

Protostar $n_H \sim 10^7 \text{ cm}^{-3}$ T ~ 100 K

~ 10 K

1 1 vi 1 1/1 1 1 1 1

Dense cloud

T ~ 20 K

Protoplanetary disk n_H ~ 10⁹ - 10¹⁵ cm⁻³ T ~ 10-10,000 K Solar System

Probed with NIR/MIR absorption spectroscopy

Ices and the star formation process

(Pre-)stellar core

Protostar $n_H \sim 10^7 \text{ cm}^{-3}$ T ~ 100 K

Π_H ~10⁶ cm⁻³

~ 10 K

Dense cloud

T ~ 20 K

Protoplanetary disk n_H ~ 10⁹ - 10¹⁵ cm⁻³ T ~ 10-10,000 K Solar System

Probed with NIR/MIR absorption spectroscopy

Ices and the star formation process - Observations in the NIR/MIR

1990s ISO 10² $2.3 - 200 \,\mu m \, R < 3000$ 10^{1} 2000s **10**⁰ Spitzer 5 - 27 µm R~ 60-600 √ 10⁻¹/XnH 10⁻² Akari 2-26 µm R~80-250 10^{-3} [2010s Herschel 10^{-4} FIR 55-610 µm Chal field star 10^{-5} 2020s JWST 0.6 - 28 µm R< 3250 10^{-6} 10 15 20 5 NASA, ESA, CSA, STScI; Joseph DePasquale (STScI), Anton M. Koekemoer (STScI), Alyssa Pagan (STScI).

Wavelength/ μ m

Ices and the star formation process - Chemistry and physics of the ice evolution

Boogert et al. (2015), ARA&A

JWST ceAge ERS Program

Co-PI Boogert (Hawaii)

80+ collaborators 1 countries

"Early Release Science"

- executed in the first year of observations **non-proprietary**
- competitively selected (13 of 106 proposals)
- only 1 ERS star formation proposal (PID 1309)
- only cycle 1 proposal spanning cloud to protostar to disk ices

PI McClure (Leiden)

JWST IceAge ERS Program target: Chamaeleon I

IRAC 3.6 μm MIPS 24 μm 0.85 mm (contours, Beloche+11)

Dense dust ridge within "central" Chamaeleon I cloud

JWST IceAge ERS Program target: Chamaeleon I

IRAC 3.6 µm MIPS 24 µm 0.85 mm (contours, Beloche+11)

JWST IceAge ERS Program target: Chamaeleon I 1. Demonstrate JWST's ability to map interstellar ices efficiently

- Map 6 main ice species with **NIRCam WFSS**
- 140 background stars, 10x more than previous maps, A_V ~ 100 mag
- Minor ices (OCN-), grain growth/crystallinity in H₂O profile
- Determine Av and extinction law using photospheric features
- Broadband imaging of CO₂

(x) Background stars

JWST IceAge ERS Program target: Chamaeleon I 2. Explore ice evolution from cold clouds to protoplanetary disks

- Targeted observations of two high-Av background stars with <u>NIRSpec FS</u> and <u>MIRI LRS</u>
- S/N~300 at 7 microns to measure blended COMs for follow-up
- Deepest ever background star observations; does ice chemistry change?

(x) Background stars

 $A_V \sim 60$ background star - $A_V \sim 95$ background star

x x

JWST IceAge ERS Program target: Chamaeleon I 2. Explore ice evolution from cold clouds to protoplanetary disks

- Spatial distribution of major ices in extended Class I protostar and Class II disk using **NIRSpec IFU** and **MIRI MRS**
- Map changes in ice processing signatures
- Formation of Complex organic molecules at each evolutionary stage (core, protostar, disk)

Class 0 protostar

IRAC 3.6 µm MIPS 24 µm 0.85 mm (contours, Beloche+11) Class II disk

 $A_V \sim 60$ background star A_V ~ 95 background star

Ce. Exolution:

Pre-stellar core (?)

Class I protostar

××

*

Data quality is fantastic: clean, detailed composites in the imaging

NASA, ESA, CSA, and M. Zamani (ESA/Webb); Science: F. Sun (Steward Observatory), Z. Smith (Open University), and the Ice Age ERS Team. F150, F200, F410, F430

Data quality is fantastic, great agreement between instruments!

Benchmarking by T. Beck (NIRSpec), NIRCam reduction pipeline (A. Boogert, H. Fraser, E. Egami, NIRCam Team), wavelength calibration issues M. McClure/W. Rocha (MIRI).

E Data quality is fantastic, great agreement between instruments!

Able to detect 0.2 μ Jy in wings of A_V ~95 spectrum H₂O feature

Figure 3: McClure + Ice Age Team (2023)

JWST spectra of densest cloud ices to date

Figure 1: McClure + Ice Age Team (2023)

These data allow access to the grain geometry, chemical environment, and elemental budget of cloud ices...

Now easily detect weaker features previously only seen towards brighter protostars

Figure 1: McClure + Ice Age Team (2023)

Signs of grain growth in CO₂ scattering profile

Icy grain size distribution has $a_{max} \sim 1 \ \mu m$.

Grain growth revealed in H₂O, CO₂ and CO bands. Radiative Transfer required, even for los in clouds. Dartois, Noble, et al. (2023, in prep.)

Figure 7: Dartois, Noble et al. (2022)

¹²CO₂ is saturated ($\tau > 6$), profile lost. Use ¹³CO₂ profile to determine local chemical environment in ice.

Figure 10: McClure + Ice Age Team (2023)

CO₂:H₂O (1:10) dominant component CO_2 :CO (0.8:10) grows with A_V

- Ultimately need grain shape correction
- **First Look** analysis without

Evidence for ongoing-CO freeze-out: increasingly large pure CO component?

- Gas phase observations will clarify degree of CO freezeout (APEX, Jes Jorgensen)
- Current estimate 45 % (A_v 60) and 33 % (A_v 95) of CO in ice (Herschel)

Figure 5, 6: McClure + Ice Age Team (2023), Pontoppidan et al. (2003-2005)

ezeout (APEX, Jes Jorgensen) CO in ice (Herschel)

Analysis Will Rocha

Organic ices form early in a water-dominated ice environment.

Figures 5, 10: McClure + Ice Age team (2023), analysis by Dr. Marina Rachid, Dr. Will Rocha

CH₃OH (methanol)

CO₂ and methanol formed <u>early</u> in water ice matrix.

Rich sample of simple inorganic ices now detected

Figures 11, 12, 13: McClure + Ice Age Team (2023)

Marina Rachid

Giulia Perotti

OCS first S-bearing molecule No $H_2S < 0.6\% H_2O$ (similar to 1% in comets)

- Global column densities (via ENIIGMA code)
- Compare with Elias 16 (A_v~19 mag)
- Generally more ice as A_v increases, but within uncertainties

Relative ice abundances do NOT show a significant dependence on A_V

19.5 Log₁₀(N_x [molec. cm⁻²]) 18.0 17.5 17.0 17.0 17.0 16.5 16.0 100.0 N_X/N_{H2}O (%) 10.0

1.0

Figure 2: McClure + Ice Age Team (2023)

ENIIGMA: Rocha et al. (2021), Elias 16 (Knez et al. 2005)

- JWST ERS program lce Age: First observations of dense cloud ices at $A_V > 50$
 - S/N of ~100-400 at 0.1-10 micro-Jy with relatively short integration times with NIRSpec/MIRI FS.
 - JWST reveals new detections of OCN-, ¹³C isotopologues, OCS, CH₄, and dOH.
 - Ice profiles reveal grain growth to micron sizes and early chemistry in water-ice.
 - Relative abundances of ices at A_v~60-95 are similar to those at A_v~20...
- More results from Ice Age coming soon...
 - NIRCam survey of background stars behind Chal.
 - 10s to 100s of lines of sight; L & M band spectra.
 - NIRSpec and MIRI spectroscopy of protostar and disk.

This **IceAge** consortium presentation was supported by:

This **IceAge** consortium presentation was supported by:

NSTC 國家科學及技術委員會 National Science and Technology Council

Royal Astronomical Society

