Habitable Worlds Observatory

Laurent Pueyo, STScl

Journees SF2A

June 21st 2023

Programmatic update

Key science

Key technologies

Programmatic update

Key science

Key technologies

NASA official posture can be found at

https://science.nasa.gov/science-pink/s3fspublic/atoms/files/AAS_Jan2023_final_online.pdf National Aeronautics and Space Administration

EXPLORE SCIENCE

NASA Townhall

Dr. Mark Clampin Astrophysics Division Director NASA Science Mission Directorate 241st AAS Meeting Seattle / January 9, 2023

Astro2020 Primary Recommendation

 Infrared / Optical / UV space telescope with ~ 6-m inscribed diameter to search for life on exoplanets and enable transformative astrophysics

The Habitable Worlds Observatory

- Primary technical requirements for coronagraphic survey are:
 - System-level stability at ~ picometer-level
 - Coronagraphic contrast $\geq 10^{10}$
- Strategic guidance

https://science.nasa. gov/sciencepink/s3fspublic/atoms/files/A AS_Jan2023_final_o nline.pdf

The Habitable Worlds Observatory: The Big Picture

- Build to schedule: Mission Level 1 Requirement e.g Planetary missions
- **Evolve technology**: Build upon NASA investments i.e.
 - JWST segmented optical system, Roman coronagraph, & Sensors
- Next Generation Rockets: Leverage opportunities offered by large fairings to facilitate mass & volume trades
- **Planned Servicing**: Robotic servicing at L2
- **Robust Margins**: Design with large scientific and technical margins
- Mature technologies first: Reduce risk by fully maturing the technologies prior to development phase.

https://science.nasa. gov/sciencepink/s3fspublic/atoms/files/A AS_Jan2023_final_o nline.pdf

One year from JWST Launch

JWST was launched on an Ariane 5 Dec 25, 2021. Credit: NASA/Chris Gunn

JWST's first light image with 18 mirror segments phased

2023 Plans

- Science Operations
- <u>15-Jan-2023 Cycle 2 proposals due</u>
- 15-Nov-2023 Cycle 3 proposal call release

https://science.n asa.gov/science

public/atoms/file s/AAS_Jan2023

-pink/s3fs-

JWST Performance Metrics

https://science.nasa. gov/sciencepink/s3fspublic/atoms/files/A AS_Jan2023_final_o nline.pdf

- Lifetime: > 2x initial goal (10 yr), 4x requirement based on propellant
- **Diffraction limit**: 1.1 µm vs 2 µm requirement
- **Sensitivity**: ~35% better than requirement (NIRCam W)
- **Pointing Stability**: Factor of ~6-7 better than requirement (achieving 1 mas
- **Photometric Stability**: better than 1%
- **Thermal Stability**: within 40mK noise of the sensors
- **Moving Target Tracking**: > 2x required rate (req:30 mas/sec)
- Backgrounds: NIR (lower than predicted), MIR (as predicted)
- More details of observatory performance will be discussed in the JWST Town Hall
 - Tonight at 6:30pm

Programmatic update

Key science

Key technologies

Astro 2020 goal: complete survey of 100 nearby habitable zones.

HabEx concept, Astro 2020 input:

- Multi-epoch reconnaissance of nearby stars using a coronagraph between 0.6 and 0.8 microns
- Dedicated follow up with UV-Vis-nearIR starshade

What can we do with HabEx?

Astro 2020 goal: complete survey of 100 nearby habitable zones.

LUVOIR concept, Astro 2020 input:

- Multi-epoch reconnaissance of nearby stars using a coronagraph between 0.6 and 0.8 microns
- Dedicated follow up for water feature at 0.9 microns
- Most promising systems further observed using near-IR and UV coronagraph capabilities.

Yield to telescope size relationship

Yield to telescope size relationship

What did Astro 2020 not decide

"Candidate" is defined by 0.9 microns water feature in previous calculation. Open questions:

- How blue in UV to robustly measure O3 and hazes?
- How deep does the contrast need to be in the visible for accurate abundance determination?
- How red in the near IR? Methane is key for non earth twin science.
- How many of the notional ~25 candidates can actually be detected in UV and near-IR?

Programmatic update

Key science

How blue, how red, how deep, can we see planets at all?

Key technologies

Programmatic update

Key science

How blue, how red, how deep, can we see planets at all wavelengths?

Key technologies

A UV coronagraph? A cold telescope? A stable wavefront? Is 6 m big enough?

HWO Technology Development and Concept Maturation Phase

HWO Technology Development and Concept Maturation Phase

US community organization around HWO as of today

Physics of the Cosmos / Cosmic Origins Groups for Habitable Worlds Observatory

Do you love ultraviolet technology and are you interested in HWO?

UV Working Group - Technology Roadmap. Contact Sarah Tuttle, tuttlese@uw.edu

UV Science & Technology Interest Group - ongoing events.

Contact Stephen McCandliss, stephan.mccandliss@jhu.edu

Technology

Ultra-Stable Observatory Roadmap Contact Lee Feinberg <u>lee.d.feinberg@nasa.gov</u>, Laura Coyle <u>laura.coyle@ballaerospace.com</u> For more opportunities to participate, see here:

Cosmic Origins Science (& Technology) Interest Groups: https://cor.gsfc.nasa.gov/sigs/sigs.php

Physics of the Cosmos Science Interest Groups: https://pcos.gsfc.nasa.gov/physpag/sigs-sags.php

US community organization around HWO as of today

ExEP Working Groups for Habitable Worlds Observatory exoplanets.nasa.gov

Technology

Coronagraph Design Survey (Belikov, Stark) Design Solicitation Open Until June 9 Coronagraph Technology Roadmap (Chen, Pueyo) Deformable Mirror Technology Roadmap (Bendek, Groff)

Science

Mission Stars List for the Habitable Worlds Observatory (Mamajek, Stapelfeldt) Exoplanet Science Metrics (Stapelfeldt) Splinter: Tue 2-3:30

Science Evaluation & Modeling

Exoplanet Yield Modeling (Morgan, Savransky) Splinter: Thu 9-11, 12:30-3 Integrated Modeling (Levine, Liu)

Workshop: Towards Starlight Suppression for HWO August 8-10, 2023; Pasadena, hybrid

- How cold does the telescope need to be?
- Is the angular resolution sufficient with a ~6m? Do new coronagraph concepts need to be developed?
- What near IR resolution is needed? What does it mean in terms of IR detector development?

- How cold does the telescope need to be?
- Is the angular resolution sufficient with a ~6m? Do new coronagraph concepts need to be developed?
- What near IR resolution is needed? What does it mean in terms of IR detector development?

Back up option: second generation instrument

Astrophysics Technology Investments

System-level picometer stability

Lightweight ULE mirror segment

Credit: L3/Harris

Picometer-scale dynamics measured with high-speed interferometry

Credit: NASA GSFC

• High Contrast Imaging

- Deep spectral characterization requires to go deeper than the canonical "ten to the ten" contrast.
- How do we build a telescope + coronagraph that are stable enough for this science?

Can we reach the raw contrast? (yes on a clear aperture)

cont

- Demonstrates static contrast at ~4e-10.
- Demonstrates contrast stability at 1e-10 (5 sigma), 2e-11 (1 sigma).
- Breaks down empirical allocations of contributions to static contrast error budget.
- Does not breaks down empirical allocations of contributions to noise floor.

Seo et al. (2019)

Can we keep the contrast stable? (work

- Using the coronagraph instrument we can compensate telescope drifts at the ~10s-1 minute timescale
- Outer segments can drift significantly more than inner segments
- In theory, we can correct thermal drifts with Deformable Mirrors in instrument


```
Based on
Leboulleux et al. (2017)
Laginja et al. (2020)
```

Can we keep the contrast stable? (working on it)

Faster timescales can be corrected either using better controllers or edge sensors at telescope

Can we keep the contrast stable? (working on it)

-4.0

-4.5

-5.0

-5.5

-6.5

-7.0

-7.5

STScI HiCAT results with synthetic segment drifts.

Mean Dark Zone Contrast vs Time

high due to noise. The open-loop contrast (cyan crosses) diverges to 1.1×10^{-6} by the final iteration at which point the BMC DM drift command for each DM has a root-mean-square of 1.26 nm and a peak-to-valley of 8.39 nm. The dotted and dashed black lines show the mean and standard deviation of the magenta curve (mean closed-loop dock-zone contrast) respectively for the duration of the experiment. The mean dark-zone contrast is held at 5.3 xTurOiliOilyppede@ionat6Segmented telescope surrogate for As seen in the magenta curve in Fig. 3, the mean and standard deviation vary with time. From 0-12 hrs, the mean is chipped contrast standard deviation vary with time. From 0-12 hrs, decreases but the sean has a positive slope. This is due to temperature and humidity instantities in the lab due to issues with the HVAC system, which caused small low-order drifts (mostly tip-tilt). This tip-tilt drift is not modelled or **DOGALS A HAT SOLUTION OF THE SECOND OF THE ACT AND A STATE OF THE ACT AND A STA** that allows faster control loops by one order of magnitude and running low order corrections in parallel with

DZM as discussed in Soummer et al. $2022.^{6}$ We expect significant gains in contrast as well as the inner working angle (IWA) in future experiments.

Proc. of SPIE Vol. 12180 121802B-6 ownloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 17 Apr 2023 erms of Use: https://www.spiedigitallibrary.org/terms-of-use

Thank you