TRAPPIST-1 seen by the JWST: First detection of the thermal emission of temperate rocky exoplanets

Credit: NASA

Elsa Ducrot

Cez

Credit: NASA

TRAPPIST-1

TRAPPIST-1

- The star : an old M8V, $T_{eff} \simeq 2500~{\rm K}$
- $\simeq 9\%~M_{\odot}$, $\simeq 12\% R_{\odot}$, at 12 pc only
- <u>The planets:</u> 7 Earth-sized planets
- 3 planets within the habitable zone
- periods from 1.51 to 18.76 days

Credit: NASA

- forming a chain of three bodies Laplace resonances
- radii, masses and irradiation similar to the terrestrial planets of the solar system
- Most favorable exoplanets for the first atmospheric characterization of temperate (0.1 4 S_{\oplus}) rocky worlds (with JWST)

TRAPPIST-1 with JWST

PI: Greene at 15µm

PI: Greene at 15µm

2022

TRAPPIST-1 with JWST

The Mid-Infrared instrument

The Mid-Infrared instrument

Credit: NASA, CEA, MPIA

The Mid-Infrared instrument

- MIRI is the only mid-infrared instrument, it covers the wavelength range of 4.9 to 28.8 μm

• MIRI has 3 modes: MRS, LRS, imaging + one Lyot and three 4-quadrant phase mask coronagraphs • MIRI's imager has 9 broad-band filters. This is the mode used to observe TRAPPIST-1 b/c in emission

TRAPPST-1 b

- With eclipses we can derive the brightness temperature of the dayside of the planet
- Not impacted by stellar contamination !

Credit: ESA

- With eclipses we can derive the brightness temperature of the dayside of the planet
- Not impacted by stellar contamination !

Credit: ESA

Motivation of the observations of TRAPPIST-1 b:

- With eclipses we can derive the brightness temperature of the dayside of the planet
- Not impacted by stellar contamination !

Credit: ESA

Motivation of the observations of TRAPPIST-1 b:

30

- With eclipses we can derive the brightness temperature of the dayside of the planet
- Not impacted by stellar contamination !

Credit: ESA

Motivation of the observations of TRAPPIST-1 b:

30

- With eclipses we can derive the brightness temperature of the dayside of the planet
- Not impacted by stellar contamination !

Credit: ESA

Motivation of the observations of TRAPPIST-1 b:

GTO 1177 - NASA Ames

- With eclipses we can derive the brightness temperature of the dayside of the planet
- Not impacted by stellar contamination !

Credit: ESA

Motivation of the observations of TRAPPIST-1 b:

Results from Spitzer at 4.5µm

	Trappist-1b	Trappist-1c
# Occultations targeted	28	9
Brightness temperature (K) upper limit	768	842

Results from Spitzer at 4.5µm

	Trappist-1b	Trappist-1c
# Occultations targeted	28	9
Brightness temperature (K) upper limit	768	842

Phase folded light curve for TRAPPIST-1 b

Ducrot +2020

Phase folded light curve for TRAPPIST-1 c

Results from Spitzer at $4.5\mu m$

	Trappist-1b	Trappist-1c
# Occultations targeted	28	9
Brightness temperature (K) upper limit	768	842

Phase folded light curve for TRAPPIST-1 b

- No secondary eclipse of TRAPPIST-1 b detected in Spitzer data at 4.5µm even when stacking 28 occultations !
- What about JWST ?

Phase folded light curve for TRAPPIST-1 c

Ducrot +2020

Observations with the JWST

The secondary eclipse of TRAPPIST-1 b is visible by eye in one single visit at 15 microns!

JWST GTO1177 visit2

Joint fit of the 5 visits

Greene et al. 2023

Comparison with possible atmospheric scenarios

- Measured temperature consistent with a blackbody but this is only one point • CO_2 rich atmosphere is likely rejected
- We must wait for the remaining 4 visits at 12.8 microns to know more

Comparison with possible atmospheric scenarios

- Measured temperature consistent with a blackbody but this is only one point • CO_2 rich atmosphere is likely rejected
- We must wait for the remaining 4 visits at 12.8 microns to know more

TRAPPIST-1 C

Joint fit of the 4 visits

Zieba et al. 2023

Comparison with possible atmospheric scenarios

- Cloudy and cloud-free Venus-like atmospheres are disfavoured at 2.6 σ and 3.0 σ
- O2/CO2 atmosphere

Zieba et al. 2023

• The measured depth can rule out all thick atmospheres with surface pressures $P_{surf} \ge 100$ bar The measurement is consistent with an unweathered ultramafic rock or a thin cloud-free

Eclipse timings

Figure made by Eric Agol (University of Washington)

- Eclipse timings can be used to constrain the eccentricities of the planets
- better constrain the eccentricities of these two inner planets.

Zieba et al. 2023

In total we have 10 eclipse timings of TRAPPIST-1 b and 4 of TRAPPIST-1c Next step: Include these eclipse timings in dynamical models (TTV analysis) to

What else could be done?

What else could be done?

What else could be done?

of an atmosphere if redistribution of heat is observed or not

- A full (or partial) phase curve at 15 μm of these planets could help us confirm the presence/absence

Transit b

T Transit b

Eclipse b

Transit g

- A double phase c of b+c with MIRI FW1500 has been granted (GO 3077)
- The system is extremely coplanar, planet-planet occultation must happen all the time

From this phase curve we will reveal whether any or both of the planet have an atmosphere • Planet-planet occultation can also help constrain the nightside temperature of TRAPPIST-1 b or c

Eclipse b

Transit g

- A double phase c of b+c with MIRI FW1500 has been granted (GO 3077)
- The system is extremely coplanar, planet-planet occultation must happen all the time

From this phase curve we will reveal whether any or both of the planet have an atmosphere • Planet-planet occultation can also help constrain the nightside temperature of TRAPPIST-1 b or c

Concusion

- thermal emission of a rocky temperate planets
- heat redistribution.
- with a thin carbon/oxygen mix atmosphere or an un weather ultramafic airless planet.
- **BUT** this is only one wavelength!
- help confirm (or not) this result.

• The secondary eclipses of TRAPPIST-1 b and c are detected at $15\mu m$ with the JWST at 8.7 sigma, and 4.4 sigma in only 5 and 4 visits respectively. This is the first times we detect the

• For TRAPPIST-1 b, the mesured brightness temperature is consistent with a blackbody with no

For TRAPPIST-1 c, a CO2-rich atmosphere is disfavored but the measurement is still consistent

• 5 additional eclipses of planet b are going to be observed at $12.8 \mu m$ microns (in 10 days !!) to

A double phase-curve of TRAPPIST-1 b+c will soon help us reveal the nature of both planets.

Thank you for your attention!

Eclipse timings

Agol et al. 2021

Individual fit for each visit with JWST

- The secondary eclipse of TRAPPIST-1 b is visible in each visit at 15 microns
- All eclipse timings are consistent with the model from Agol et al. 2021 at less than 2 sigma

- precision of 3 to 5%, which is equivalent to a radial-velocity precision of 2.5 cm/sec !!

• From dynamical model we can derive the masses and orbits of the planets with exquisite precision Using TTVs Grimm+2018 and Agol+2021 derived masses for the TRAPPIST-1 planets with a

- 0 precision of 3 to 5%, which is equivalent to a radial-velocity precision of 2.5 cm/sec !!

• From dynamical model we can derive the masses and orbits of the planets with exquisite precision Using TTVs Grimm+2018 and Agol+2021 derived masses for the TRAPPIST-1 planets with a

