New features of phase spiral from Gaia DR3

Chengdong Li University of Strasbourg

Collaborators: Arnaud Siebert, Giacomo Monari, Benoit Famaey, Simon Rozier

Outlines

What kind of spiral patterns do we observe in the Galaxy

What are the possible mechanisms to the spiral feature

What is the phase spiral

- A curled spiral or "snail shell" shape distribution for disc stars in phase space z – v_z map
- The spiral pattern is prominent via ρ , $< v_R >$, $< v_{\varphi} >$ plot

Widrow 2023

How the phase space spirals observed in the Milky Way

• Single armed phase spirals revealed by stars in solar vicinity

Double armed phase spirals found by density and <v_R> contrast inside solar radius

Antoja+23

Interpretations to the phase spiral

- One-amed spirals:
- 1. Passing satellite interaction with the disc (Binney+18, Laporte+19...)
- 2. Vertical oscillations driven by bar buckling (Khoperskov+19)
- 3. Wakes or substructures from dark matter halo (Grand+22, Tremaine+22)
- Two-armed spirals:
- 1. Possible merger events (Hunt+21)

2. Fast, impulsive perturbations symmetric about the mid-plane (Banik+22, Widrow23)

Observations from Gaia DR3

One-armed spiral pattern revealed by density contrast

Observations from Gaia DR3

- 2-armed spirals in the first panel
- A transition between 1&2 armed features in solar vicinity
- 1-armed feature in outer disc

Theoretical interpretations

Test particle simulation method

- Pseudo stars generated under initial conditions
- Orbital integration under joint potential of bar&spiral arm models

• Phase space features derived

Modelling frameworks

Axisymmetric DF based model (Binney&Vasiliev 2023)

In-plane perturbation models

- bar model
- 1. Bar with constant pattern speed and radial profile (Chiba+21)
- 2. Bar with decreasing pattern speed and increasing mass (Sormani+22)
- spiral-arm model
- 2-armed spiral arm with constant pattern speed (Cox&Gomez 2002)

Constant bar model

The distribution of the density ρ , $\langle v_R \rangle$, $\langle v_{\varphi} \rangle$, and $\langle v_z \rangle$ in the x-y plane at T = 5.0 Gyr.

The face-on contour map of $\langle v_R \rangle$ and Δv_z for the test particles at T = 2.0 Gyr

Constant bar model

No spiral features seen throughout the simulation

Constant bar with external impulse

- An external intruder can cause 1armed spirals in both $\langle v_R \rangle$ and ρ
- Spiral pattern eliminated inside-out
- With steady bar model, no new phase spirals appear

Constant bar with external impulse

Clear stripes seen in $\theta_z - \Omega_z$ plane for T = 0.5 & 1.5 Gyr

Time-variation model

- 2-armed spiral features seen both colour-coded by density and radial velocity
- The spirals are not as tightly wound as what we observe in the Galaxy
- The spiral pattern lasts longer in $\langle v_R \rangle$ than in ho

Time-variation model

- T = 5.5 Gyr for timevariation bar model
- 2-armed spirals in *P* can be seen in outer disc

Conclusions

- The phase space spirals are seen throughout the disc from Gaia DR3-
- 1-armed spiral pattern locates at outer disc while 2-armed spiral pattern seen at inside solar radius
- 1-armed spiral pattern can be triggered via single impulsive external event
- 2-armed spiral pattern possibly created by the interaction between the disc and decreasing bar