

Water in solar-type protostars

Audrey ANDREU & Audrey COUTENS

Established by the European Commission

embedded phase to the planet-forming disk

20/06/2023

Audrey ANDREU

Star formation

Star formation

Adapted from Persson, 2013

Water deuteration

- Water abundant and essential for life \bullet emergence
- Deuteration sensitive to physical conditions in which molecules form (Ceccarelli et al. 2014) *e*ffective when $T \sim 10 \text{ K}$
- Found on asteroids and comets, possible \bullet delivery on Earth (e.g. Altwegg et al. 2015)

<u>Compact emission</u>

- 1st water interferometric detection Jørgensen & van Dishoeck 2010
- Compact emission ~ 200 250 AU

Jorgensen et al. 2010, Person et al. 2013, 2014, Coutens et al. 2014, Taquet et al. 2014, Jensen et al. 2019, Tobin et al. 2023

Water deuteration in protostars

- Similar ratios for comets and clustered protostars
- Isolated vs clustered sources: HDO/H₂O ratios 2 times higher in clustered protostars (Jensen et al. 2019)
- Faster formation of clustered sources or higher temperatures in the molecular cloud could explain the differences in the ratio (Jensen et al. 2021)
- D₂O/HDO ~ 10⁻² comet 67P and Class 0 clustered (Altwegg et al. 2017, Coutens et al. 2014)

Tobin et al. 2023

<u>L1551 IRS5</u>

- Class I protostar (Chen et al. 1995) and FUor object (Connelley & Reipurth 2018)
- Binary system N and S separated by 0.36" (Biegen & Cohen 1985)
- Located in the L1551 molecular cloud in the Taurus star forming region (Strom et al. 1976), at ~155pc (Zucker et al. 2019)
- Relatively isolated (Adams 2010)
- $L_{bol} = 30-40 L_{\odot}$ with $L_N > L_S$ (Liseau et al. 2005)

L1551 molecular cloud Roccatagliata et al. 2020

NOEMA observations

Molecule	Transition	Frequency	$E_{\rm up}$	A_{ij}	$g_{\rm up}$	Beam size	PA	rms	dv	Project
		[MHz]	[K]	[s ⁻¹]		["×"]	[°]	[mJy beam ⁻¹]	$[km s^{-1}]$	1
HDO	3 _{1,2} - 2 _{2,1}	225896.72	168	1.3×10^{-5}	7	0.76×0.51	21.7	4.2	0.5	W18AO
$H_{2}^{18}O$	$3_{1,3} - 2_{2,0}$	203407.52	204	4.8×10^{-6}	7	0.83×0.57	24.0	3.7	0.5	W18AO
HĐO	4 _{2,2} - 4 _{2,3}	143727.21	319	2.8×10^{-6}	9	2.51×2.05	37.1	2.1	4.0	S16AE

NOEMA interferometer, credits: Karin ZACHER

- Two components with different velocities (~ 6.0 km.s⁻¹ and ~ 9.5 km.s⁻¹)
- Compact emission ~ 220 AU

Integrated emission maps Andreu et al. to be submitted

<u>Temperature dependency</u>

- Derived column density from gaussian fitting of the lines assuming LTE conditions
- Obtained the HDO/H₂O ratios using ${}^{16}\text{O}/{}^{18}\text{O} = 560$ (Wilson & Rood 1994) HDO/H₂O = $\frac{\text{N(HDO)}}{560 \text{ N(H}_2{}^{18}\text{O})}$
- N depends on θ_s and Tex
- Source sizes found from circular gaussian fitting of the emission in the uv-plane
- Ratio almost constant above 150 K

T-dependence in the HDO/H_2O ratio, Andreu et al. to be submitted

Ratio comparison $HDO/H_2O = (2.0 \pm 0.8) \times 10^{-3}$ $HDO/H_2O > 0.5 \times 10^{-3}$

Comparison of HDO/H₂O ratios in comets and protostars. Andreu et al. to be submitted, adapted from Jensen et al. 2019

- HDO/H₂O almost independent of θ_s and T_{ex} (source parameters)
- Ratio of relatively isolated Class I L1551 IRS5 similar to isolated Class 0 protostars
- Ratio of binary Class I L1551 IRS5 similar to single Class I V883 Ori
- Seems no evolution in the ratio during star formation process

Thank you for your attention

Audrey ANDREU

European Research Council Established by the European Commission

Deuteration

- Replacement of a H for a D atom
- $H^{+} + D \leftrightarrow H + D^{+}$ $D^{+} + H_{2} \rightarrow HD + H^{+} + \Delta E_{1}$ $D^{+} + HD \rightarrow D_{2} + H^{+} + \Delta E_{2}$

 H_3^+ + HD \rightarrow H_2 + H_2D^+ + ΔE_3

- Effective when temperature is low
- Deuteration very sensitive to the physical conditions in which molecules form (Ceccarelli et al. 2014)

Deuterium fractionation processes in cold gas Ceccarelli et al. 2014

Interferometer VS single-dish

Credits: Karin ZACHER

Beam size comparison

Water deuteration with single-dish telescopes

- e.g, IRAS16293-2422, NGC1333 IRAS4A and IRAS4B, SVS13-A (e.g., Liu et al. 2011, Coutens et al. 2013, Codella et al. 2016)
- HDO/H₂O ~ 5% in the photodesorption layer and $D_2O/H_2O \sim 0.5\%$ (*Coutens et al. 2013a*)
- Deuteration of water lower than formaldehyde and methanol

Artist concept of the Herschel Space Observatory in space, Herschel Caltech website

• ${}^{16}O/{}^{18}O = 560$ (Wilson and Rood 1994)

08/06/2023

<u>Clustered vs Isolated</u>

Clustered = group of stars physically related, "a group of 35 or more physically related stars whose stellar mass density exceeds $1.0M_{\odot}/pc^{3}$ (Lada et al. 2003)

 $< n_c > \ge 10^6 - 10^7 \text{ cm}^{-3}$, more compact, diameter_{cluster} ~ 0.02-0.03 pc, more closely spaced $l_{cluster} \sim 0.03 \text{ pc}$ Taurus cores isolated: $< n_{isolated} > \ge 10^5 \text{ cm}^{-3}$, $D_{isolated} \sim 0.1 \text{ pc}$, $l_{isolated} \sim 0.25 \text{ pc}$ (Ward-Thompson et al. 2007)

Presence (clustered) or absence (isolated) of a massive protostar, > 25 YSO/pc² or < 10 YSO/pc² (Bergin et al. 2023)

density of sources in the Taurus only a few tens in $\sim 1 \text{ pc}^3$ (Gomez et al. 1993) in Ophiuchus and in NGC1333, a few $10^2 - 10^3$ (Bontemps et al. 2001; Jørgensen et al. 2006)

Model of surface grain chemistry

- Chemical model developed by *Furuya et al. 2015,* 2016. to explain observations:
- Decreasing HDO/H_2O ratio from the external regions (~1%) to the internal ones

mass protostars S. S. Jensen et al. 2021

Audrey ANDREU