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The composition of low-mass exoplanets

• Low-mass planets present two subpopulations 
based on radius and composition 


• Super-Earths: dominated by silicates and iron 
(Fe) 

• Sub-Neptunes: volatile-rich


• Open questions: 


• Super-Earths: bare rock or rocky + thin 
atmosphere? 

• Volatiles in sub-Neptunes: H/He, water, or both?
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Fulton et al. 2017, 2018

Super-Earths Sub-Neptunes

Use interior models
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Why planetary interior models?
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• Mostly used to calculate mass-radius 
diagrams to interpret data 

• Support to atmospheric modelling. Ex:

• clouds (GJ1214 b: Gao et al. 2023)  
• stellar contamination (TRAPPIST-1: Zhang 

et al. 2018, Ducrot et al. 2018) 
• degeneracies in chemical species (K2-18 

b: Bézard et al. 2022, Tsiaras et el. 2016)


• Degeneracies in interior models: different 
compositions can explain the mass and radius 
of one planet



Marseille’s Super-Earth Interior Model (MSEI)
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Input: 


• Mass


• Composition: core mass 
fraction (CMF), and 
water mass fraction 
(WMF)


• Surface pressure and 
temperature

Output: 


• Radius


• Fe/Si mole ratio

Brugger et al. 2016, 2017

Differential equations 

Pressure

Gravity

Temperature

Enclosed mass
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Interior-atmosphere interface
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• If surface pressure > 300 bar, 
Atmosphere base is at 300 
bar. Atmosphere-supercritical 
interface 

• If surface pressure < 300 bar, 
Atmosphere base is the 
surface.

Atmosphere

Supercritical

Mantle

Core

Interface

L. Acuña, PhD Thesis 
PT profiles assuming a Sun-like star
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Interior-atmosphere coupling: atmospheric model
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Input: 


• Surface pressure and 
temperature


• Atm. Composition 
(water-dominated)


• Mass and radius of 
planet from centre up to 
bottom of atmosphere

• RADCONV1D: Atmospheric model by Marcq et al. 2017, Pluriel et al. 2019

Solve radiative transfer 
equation


Pressure, temperature and 
altitude profiles

Output: 


• Outgoing Longwave Radiation (OLR) 

• Bond albedo (AB)

• Atmospheric thickness and mass
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Radiative-convective equilibrium (RCE)
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Output: 


• Outgoing Longwave Radiation 
(OLR)


• Bond albedo (AB)

RCE condition: 
Emitted radiation equals absorbed radiation: 


OLR - Fabs = 0

Teq = (1 − AB)0.25 ( R⋆

2ad )
0.5

T⋆

Surface temperatures at RCE

TRAPPIST-1 b, c and d

 Acuña et al. 2021
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Multiplanetary systems
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Credits: NASA

• Multiplanetary systems are environments suitable to explore the compositional diversity of 
low-mass planets, their formation and evolution.


• Aim: Explore the compositional diversity of low-mass planets, in a homogeneous analysis to 
constrain their formation and evolution


• Perform MCMC retrievals on mass and radius data to obtain posteriors for CMF and WMF

Leleu et al. 2021



Multiplanetary systems
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• Selection:

• Low-mass planets ( )

• Systems with 5 or more planets


• Final sample:

TRAPPIST-1 (Acuña et al. 2021)

K2-138 (new RV masses by T. Lopez) 

TOI-178

Kepler-11 

Kepler-102 

Kepler-80

M < 20 M⊕

Credits: NASA



TRAPPIST-1: Water mass fractions
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• Planets b and c: 


• Most likely no atmosphere (see also 
talk by Elsa Ducrot, Greene et al. 2023, Ih 
et al. 2023)


• Max. Surface pressure (T-1 c) = 80 bar 
(Acuña et al. 2023)

Acuña et al. 2021



TRAPPIST-1: Water mass fractions
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• Planets b and c: 


• Most likely no atmosphere (see also 
talk by Elsa Ducrot, Greene et al. 2023, Ih 
et al. 2023)


• Max. Surface pressure (T-1 c) = 80 bar 
(Acuña et al. 2023)


• Planet d: 


• Observed mass and radius also 
compatible with with water vapor in a 
CO2-dominated envelope (up to 300 
bar)

T-1 d: liquid water 
phase (unlikely)

T-1 d: water vapour 
with N2 and CO2 

background

Acuña et al. 2021



TRAPPIST-1: Water mass fractions
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• Planets b and c: 


• Most likely no atmosphere (see also 
talk by Elsa Ducrot, Greene et al. 2023, Ih 
et al. 2023)


• Max. Surface pressure (T-1 c) = 80 bar 
(Acuña et al. 2023)


• Planet d: 


• Observed mass and radius also 
compatible with with water vapor in a 
CO2-dominated envelope (up to 300 
bar)


• WMF increases with distance from star
Acuña et al. 2021



Water mass fraction in multiplanetary systems
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Acuña et al. 2022
Innermost planet in each 

system



Water mass fraction in multiplanetary systems
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• TRAPPIST-1 and K2-138: clear increasing WMF 
trend

Acuña et al. 2022
Innermost planet in each 

system



Water mass fraction in multiplanetary systems
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• TRAPPIST-1 and K2-138: clear increasing WMF 
trend


• Diversity in WMF trends


• All systems have in common: 


• Inner planets tend to be dry


• Volatile-rich (water or H/He planets) are in 
outer part

Acuña et al. 2022
Innermost planet in each 

system



H/He envelopes
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•Some planets are not compatible with water 
envelopes in hydrostatic equilibrium 


• We quantify the likelihood of water envelopes:


•  : empty markers


• H/He envelope, atmospheric escape, or both?


• We estimate Jeans and XUV atmospheric 
escape in the energy-limited approximation 
(Aguichine et al. 2021)

Rwater < Robserved

Acuña et al. 2022
Innermost planet in each 

system



Planet formation in multiplanetary systems
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• Planets with :


• Planets with H/He envelopes are in outer 
part of system. 


• Some planets undergo Jeans escape


• Planet formation mechanisms:


• Volatile-rich, outer planets: formation in 
the vicinity of water ice line


• Rocky, inner planets: formation close to 
refractory (Fe,Si) lines. Jeans and XUV 
atmospheric escape.

Rwater < Robserved

Acuña et al. 2022

Difference between Rwater and Robserved Mass lost due to 
Jeans escape 



Conclusions
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•Our homogeneous analysis on the composition of planets in multiplanetary 
systems:


• show a clear separation between the inner, dry planets, and the outer, 
volatile-rich planets. 


• our CMF and WMF estimates can be used to constrain formation site with 
respect to ice and refractory lines, and formation mechanisms, such as 
Jeans escape.


• Inner planets typical WMF < 5%. Moderately volatile-rich sub-Neptunes have 
WMF = 10 - 25%. Sub-Neptunes with WMF > 30% are good candidates for 
H/He envelopes.
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