

Multimessenger synergies between LISA and Athena

Alberto Mangiagli Marie Curie Fellow

Astroparticule et Cosmologie (APC), Paris

Collaborators: Chiara Caprini, Sylvain Marsat, Marta Volonteri, Susanna Vergani, Nicola Tamanini, Henri Inchauspé

Based on : Piro+22, AM+22, Piro+21, AM+20

In 2022, ESA communicated that the predicted Athena cost would significantly exceed ESA allocated resources.

Therefore, Athena is currently undergoing a design-to-cost exercise, redesigning the mission in order to be within the cost cap while preserving as much as possible the original configuration.

Here, I assume the nominal scientific performance of Athena.

The *newAthena* science performance will be known at the end of its Phase A, expected to be completed by 2024.

Overview of the two missions

Gravitational-waves (GW) spectrum with LISA

 > 3rd Large class mission from ESA
 > GWs in [0.1, 100] mHz
 > Launch date : ~2035 First data in ~2037

▶ Now in Phase B1 - Adoption end 2023/2024 ▶ Launch date: Late 2030

Electro-magnetic (EM) spectrum with Athena

2nd Large class mission from ESA
 Wide Field Imager :
 FoV ~ 0.4 deg²
 F_X ~ 2×10⁻¹⁷ erg cm⁻² s⁻¹
 Launch date: Late 2030

Synergies between the two missions

 Fluid flows in fast changing space-time
 Formation of Xray corona and jet launching around new horizons
 Accretion disc structure

Testing General Relativity
 Measuring the speed of GWs and dispersion properties

« The additional science
 [...] the two missions could achieve may provide
 breakthroughs in scientific
 areas beyond what each
 individual missions is
 designed for. »
 (Piro+22, credit : M. Colpi)

Testing the expansion rate of the Universe

Cosmography

Astrophysics

Fund. Physics

Stellar black hole binaries (SBHBs)

Stellar BHBs at high frequency : LISA point of view

EM counterpart to Stellar BHBs mergers

Isolated and dynamical formation channels do not predit an EM counterpart, but...

X-ray :
 Accretion still requires L > 10⁴ L_{edd}
 Remnant kicks are uncertain

× EM emissions might be AGN-dominated

✓ L~2-5×L_{edd} leaves a detectable imprint in the GW signal (Sberna+22)

Detection of EM emission will probe alternative formation channels

Extreme/Intermediate mass ratio inspirals (EMRIs/IMRIs)

Extreme mass ratio inspirals in LISA

Massive BH + lighter companion

- > Uncertain merger rate : $\sim 1-10^3$ /yr events
 - Long-lived sources as SBHBs

- Accurate sky localization (~10 deg²)
 × Poor d_L estimates
 - Complex data analysis procedure :
 X Overlapping signals
 X Higher harmonics

EM counterpart from EMRIs

Direct EM counterpart

- If the secondary BH is >100 M_{\odot} :
- Broad Fe Kα line at 6.4 Kev (McKernan+13,+14)

Tidal Disruption Events (TDEs) from :

- White Dwarfs
- Massive stars (Sesana+08,Eracleous+19,Wang+21)
- > Broad rate : $0.01-10^2$ /yr
- ✓ Bright X-ray emission ~ 10^{44-45} erg/s

Gas effect on GW signal

➤ If the error volume hosts few AGNs, we can spot the galaxy

Massive black hole binaries (MBHBs)

MBHB merger rates

Let's proceed with order: How many MBHB mergers do we expect?

Large uncertainties in astrophysical processes (Klein+16, Katz+19, Barausse+20) :

- Initial seed mass
 Time delays between galaxy and MBHB merger
- Feedback processes

Cosmological simulations predicts ~ 1/yr with $M_{BH} \sim 10^5~M_{\odot}$

From few to several hundreads per year

How MBHBs do look like in LISA?

> Strong and long-lasting signals > Strong overlap between signals from different sources → Global fit approach > Detectable up to z ~ 20

What EM emission do we expect?

No transient AGN-like emission has been associated unambiguously to a MBHBs
 Uncertainties on BH of 10⁵⁻⁷ M_☉ concerning bolometric correction, obscuration, spectra and variability

During the inspiral . . .

 The binary excavates a cavity
 Two bright minidisks around each BHs emitting in X-ray
 Gas streams flowing in the cavity
 Periodicities due to the orbital motion of the binary might be clear signatures (Dal Canton, AM +19)

(Bowen+18, Haiman+17, Tang+18, Nobel+21, Combi+22, Cattorini+22, Gutiérrez+22 ...)

What EM emission do we expect?

Post-merger signatures

Disk-rebrightening (Rossi+10)

✓ In-plane kicks for BHs with spins aligned along the orbital momentum

×Might be to weak to be observed

> Afterglow emission (Yuan+21)

Broad band emission from radio to X-ray
 Delays from days to months

However, close at merger, minidisks might be depleated ⇒ Reduction in luminosity (Tang+18)

LISA sky localization for systems at z = 1

Large distributions \rightarrow strong dependence from true binary position ²⁰

Estimating the number of multimessenger MBHBs

In AM+2207.10678 we estimate the rate of MBHBs with a detecatable EM counterpart

Estimate the number of X-ray counterparts over LISA time mission

Key improvements respect to previous works (Tamanini+16)

- > Improve the modeling of the EM counterpart
- > Bayesian analysis for GW signal (Marsat+20) \rightarrow expensive but realistic **Starting point**
 - Semi-analytical models: tools to construct MBHBs catalogs (Barausse+12)

Modeling the EM emission

X-ray emission (Shen+20)

$$\frac{L_{\rm bol}}{L_{\rm X}} = c_1 \left(\frac{L_{\rm bol}}{10^{10} L_{\odot}} \right)^{k_1} + c_2 \left(\frac{L_{\rm bol}}{10^{10} L_{\odot}} \right)^{k_2}$$

▶ FoV ~ 0.4 deg²
▶ Deep as $F_{X, lim} \sim 2 \times 10^{-17} \text{ erg cm}^{-2} \text{ s}^{-1}$

Assuming 300ks as maximum observation time

AGN obscuration (Ueda+14, Gnedin+07)

No obscuration
 Trained by dragon

Typical hydrogen column density distribution

Some caveats

Detection is claimed when F_X> F_{X, lim}
 No tiling of LISA area (more complicated detection strategy)

Accretion scenarios The accreting gas comes from the catalog Assuming Eddington accretion

Analysis valid only for postmerger emission

Two main scenarios

General procedure

We focus on two scenarios (No obscuration for the moment!)

Maximising

Eddington accretion for X-ray emission

$$> \Delta \Omega \sim 0.4 \text{ deg}^2$$
, $F_{X, \text{ lim}} \sim 2 \times 10^{-17} \text{ erg cm}^{-2} \text{s}^{-1}$

<u>Minimising</u>

Catalog accretion for X-ray emission

$$\blacktriangleright \Delta \Omega \sim 2 \text{ deg}^2$$
, $F_{X, \text{ lim}} \sim 2 \times 10^{-16} \text{ erg cm}^{-2} \text{s}^{-1}$

Redshift and total mass distributions

Redshift and total mass distributions

Redshift and total mass distributions

Distribution of X-ray fluxes of multimessenger MBHBs

Number of EMcps in 4 yr

(in 4 yr)	Athena				
	Catalog		Eddington		
	$F_{\rm X, lim} = 4e-17$	$F_{\rm X, lim} = 2e-16$	$F_{\rm X, lim} = 4e-17$	$F_{\rm X, lim} = 2e-16$	
	$\Delta\Omega=0.4\text{deg}^2$	$\Delta \Omega = 2 deg^2$	$\Delta\Omega = 0.4 deg^2$	$\Delta \Omega = 2 deg^2$	
No-obsc.	0.49	0.27	1.02	0.84	Light
	2.67	1.38	3.87	2.09	Heavy
	0.58	0.31	4.22	2.98	Heavy-nd
Obsc.	0.18	0.04	0.31	0.18	Light
	0.18	0.09	0.18	0.09	Heavy
	0.09	0.04	0.27	0.18	Heavy-nd

► A factor ~ 2 between accretion from catalogs and Eddington

Dramatic decrease with obscuaration

LISA parameter estimation selects preferentially heavy systems

Multimessenger will be challenging !

Stellar BHBs

Granted sources from LVKEM counterpart might be too faint

EMRIs

Uncertainties in the merger rate
EM counterpart is comparable to
AGN luminosity
Only few studies on the topic

Massive BHBs

Uncertainties in the merger rate
Broad type of EM emission
Most sources are intrinsically faint and at high redshift
We need better understanding of obscuration

Prospects for the future

Transients associated to MBHB mergers
Study to identify the host galaxies if we

have $>10^3$ galaxies in LISA error box

Simulate observational campaigns