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How can we train a machine learning algorithm to infer 
the origin of the low mass binary black holes detected in 

LIGO/Virgo ?



LIGO/Virgo mission
• 90 GW signals from compact binary 

coalescences, primarily mergers of binary 
black holes (BBH) — Last results from the O3 
science run
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Total mass vs Mass ratio of the GWTC-3 detected events. Credits Abbott 
et al. (2021)

• What is the origin of those BBH? Different 
scenarios: dynamical formation in globular 
clusters or isolated binaries? Are LIGO/Virgo 
observations (BH mass or spins) compatible 
with those scenarios ?

• Idea of this talk : Focus un isolated 
binaries and make prediction about 
their binary star progenitors
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Population synthesis vs binary star evolution
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Merger rate density of DCO. Credits 
García et al. (2021)

• This talk : BSE 
Aim : simulate a population of binaries 
with MESA and use machine learning to 
learn the input/output relation of these 
simulations

Merger rate density of DCO. Credits 
Santoliquido et al. (2020)
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• Simulation of the binary formation and 
evolution processes: Two approaches 
- Binary Population Synthesis (BPS) 
- Binary star evolution (BSE)



MESA simulations
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• 1 simulation 
~10-100 CPU 
hours


• CE phase : 



• Asymmetric kick during 
supernova event not 
taken into account


ΔEbind = αCEΔEorb
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Simulated population of binary star

• 27k simulations in total, 22k 
from García et al. (2021)


• Final compact binary :  
Mass of the first object :  
Mass of the second object :  
Orbital distance :  
Merging time :

m1f
m2f

af
tmerge
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Initial binary Range value

Mass of the first star

Mass of the first star

Orbital distance

Metallicity

Mass transfer efficiency

Common enveloppe efficiency

ai

m2i

−log(Z)

β

αCE

[20M⊙,91M⊙]

[30R⊙,500R⊙]

[14M⊙,62M⊙]

{1.8,2.2,2.4,3,4,5}

{0.2,0.4,0.6,0.8}

{1,2}

m1i
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Machine Learning project

• Use MESA simulations to train 
regressor to infer final state from initial 
parameters of massive binary stars


• We want to train it such that 
error(target) < error(LIGO/Virgo)

Regressor
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LIGO/Virgo 
predictions

Progenitors
Bayesian inference
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Initial star binary Final compact 
binary

Properties of the 
binary stars


Features 
(m1i, m2i, ai, β, Z, αCE)

Properties of the 
compact binary


Targets 
(m1f, m2f, af, tmerge)



Results
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Relative error on final mass 1 (top) and final mass 2 
(bottom) in the initial masses plane

Number of events in the testing dataset with a relative error for predicted final 
masses within a given bin. Red lines are values where 67% (dotted), 95% 

(dashed) and 99.5% (solid) of the dataset are below. 
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Inference of the BBH progenitors
• We can now simulate (regress) the 

binary evolution very fast


• Use the regressor to find binaries that 
produce BBH compatible with the 
LIGO/Virgo posteriors


• Use a Bayesian sampler to do the 
inverse problem
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Regressor

LIGO/Virgo 
predictionsProgenitors

Bayesian inference

Initial star binary Final compact 
binary

Properties of the 
binary stars


Features 
(m1i, m2i, ai, β, Z, αCE)

Properties of the 
compact binary


Targets 
(m1f, m2f, af, tmerge)
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Comparison with the results of Garcia et al, 2021, on 
GW151226 and GW170608

• Initial masses well 
constrained by the 
algorithm, in agreement 
with results from 
simulations 


• However, orbital 
separation is not in 
agreement with results 
from simulations

Comparing results from MESA simulations (Garcia et al. 2021) and from Bayesian inference for two GW 
events (GW151226 and GW170608) SF2A - 23/06/2023
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Results with GWTC-3

Posterior mass distribution of the BH masses Initial mass distribution of the GW progenitors

Bayesian Inference

• 65 gravitational wave events tested with the algorithm


• First results give a glimpse of the existence of groups of binary systems covering the final phase space


• Need to dig further in the biases brought by the algorithm.
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Summary
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• Interest of the work : 
- MESA simulations describe with good precision physics behind the evolution of binary stars, giving 
a useful dataset to study progenitors. 
- ML drastically reduces the computing time of the final state of a binary


• Results :  
- ML based evolution model for black hole binaries in the  mass 
range able to predict component mass with 20% accuracy. 
- Use of Bayesian inference on LIGO/Virgo events mass posterior distribution allow to constrain the 
initial masses of the progenitors.


• Limits : 
- We are in a fixed phase space, expanding it is computationally expensive 
- ML does not perform well at predicting final orbital separation and merging time. 
- Bayesian inference not with agreement with former studies on orbital separation

m1 ∈ [3,30] − m2 ∈ [3,40] M⊙



BACK UP



ML



Machine Learning project
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The algorithm :
Learning set : Xl = {xl,i}i∈[1,n], Yl = {xl,i}i∈[1,n]

Validation set : Xv = {xv,i}i∈[1,n], Yv = {xv,i}i∈[1,n]

A RFR algorithm with B trees will simulate B 
 new datasets  of size n, 
using selection with replacement from the 
original dataset, and apply regression tree 
on the B new datasets.

(Xb, Yb)b∈[1,B]

Xl, Yl

X1, Y1 Xb, Yb XB, YB
. . .. . .

Y1 ≈ f1(X1) Yb ≈ fb(Xb) YB ≈ fB(XB)

̂f(Xv) =
1
B

B

∑
b=1

fb(Xv)

. . . . . .
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Schematic description of a Random Forest Regressor



Correlation map between initial and final parameters

Results (1) : Sanity check

• Strong correlations 
between final masses and 
initial parameters


• Weaker correlations for final 
orbital separation and  
merging time
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Stellar 
winds

Mass 
transfer

Direct 
correlation

Direct 
correlation

Surprising



Merger events in the dataset
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Termination Number Percentage of 
the total dataset

CE merge 
phase 3157 12 %

Binary 
disruption 33 < 1%

Numerical 
issues 2733 10 %

Mergers (within 
Hubble time)

21170 
(3197)

78 %  
(12 %) 

Total 27093 100 %
                                 Representation of the dataset



Number of events in the testing dataset with a relative error for predicted final orbital separation and 
merging time within a given bin. Red lines are values where 67% (dotted), 95% (dashed) and 99.5% 

(solid) of the dataset are below. Dashdot correspond to 50% (left), and 1% (right) 



Results (2)

Total mass vs mass ratio of GWTC-2 detections Credits Abbott et 
al. (2021)
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Total mass vs mass ratio for the tested dataset. 



Precision of the model and holes

Representation of a cut in the phase space. 
(z=0.015, β=0.4, αCE=2)Probability of having a merger in M1i/M2i plane





Posterior simulations
• 4984 have been done 998 mergers (within Hubble time) 

have been obtained


• Different z and β tested  (log(z) ∈ {−2 ; − 3; − 4}; β ∈ {0.2 ; 0.4})

Final parameters histogram repartition. Color indicate β and z.
Initial vs final parameters for the simulations. Colors 

represent β and z



Changing the strat, populate smart

• High computational cost


• Some areas have just holes that 
have to be filled

Some regions are less populated, leading to 
those oscillations in the merging rate density. 
(Red is what more simulations would look like)

Showing holes in the phase space



Codes



State of the art in massive binary 
simulations and inferences on progenitors

• BPS is a great tool to get a huge amount of 
binaries, spanning wide ranges of masses and 
separation in a reasonable computing time.

Binary Population Synthesis (BPS)

Schematic for the COSMIC BPS code. The evolution is made through a look-up table. Credits : Breivik et al. (2020)

• Parametric BPS (pBPS) use fitting formulae or look-up 
tables, but imply strong approximations for the binary 
systems.



State of the art in massive binary 
simulations and inferences on progenitors

• Detailed Binary Evolution codes are much 
more time consuming with ~10 — 100 CPU 
hours per simulation  (Paxton et al. 2019).


• They account for more precise physics of the 
binary and are easily customizable.

Kippenham diagram of a 14 + 16 binary with 
a 3 days orbital period. Credits Paxton et al. 

(2017)

Detailed Binary Evolution (dBE)



BPS
• IBiS (Tutukov & Yungelson 1996, and 

references therein) 


• Brussels’ code (Vanbeveren et al. 1998a,b) 


• Scenario Machine (Lipunov et al. 1996, 2009)


• SeBa (Portegies Zwart & Verbunt 1996; 
Toonen et al. 2012)


• BSE (Hurley et al. 2002)


• StarTrack (Belczynski et al. 2002, 2008)


• PNS (De Donder & Vanbeveren 2004)


• binary c (Izzard et al. 2004, 2006, 2009) 

• SEVN (Spera et al. 2015)


• TRES (Toonen et al. 2016) 


• BPASS (Eldridge & Stanway 2016;  
Stanway et al. 2016; Eldridge et al. 2017; 
 Stanway & Eldridge 2018)


• COMPAS (Stevenson et al. 2017;  
Riley et al. 2021)


• ComBinE (Kruckow et al. 2018)


• COSMIC (Breivik et al. 2020)


• MOBSE (Giacobbo et al. 2018)



Binary Evolution Codes

• BINSTAR (Siess et al. 2013)


• MESA (Paxton et al. 2011, 2013, 2015, 
2018, 2019)


• BPASS (Eldridge & Stanway 2016; 
Stanway et al. 2016; 
Eldridge et al. 2017; 
Stanway & Eldridge 2018)

• Cambridge STARS code (Eggleton 1971; 
Pols et al. 1995;  
Eldridge & Tout 2004)


• ev/STARS/TWIN (Pols et al.1995; 
Nelson & Eggleton 2001; 
Eggleton & Kiseleva-Eggleton 2002)


• BEC (Heger et al. 2000; 
Heger & Langer 2000)



State of the art in massive binary 
simulations and inferences on progenitors

• Statistics on merger rate density within the 
Hubble time.


• Statistics on total population of DCO.

Predictions

DCO population produced by POSYDON. Credits Fragos et al. (2022)
Merger rate density of DCO. Credits 

Santoliquido et al. (2020)



Comparisons with GWTC-2
• Given  LIGO/Virgo detections 




• Also given hyper-parameters θ, with prior p(θ), we 
have :

Nobs
{x} = {x1, . . . , xNobs

}

p(θ |{x}, Nobs) ∝ p({x}, Nobs |θ)p(θ)

• Which can be rewritten as :

p(θ |{x}, Nobs) ∝ p(θ)
Nobs

∏
i=1

∫ p(xi |θ, α)ppop(α |θ)dα

∫ pdet(α, θ)ppop(α |θ)dα



MCMC



Monte Carlo algorithm

• Simulate a large population of binaries following 
priors.


• IMF :  (Salpeter/Kroupa)


• Uniform distribution on metallicities, orbital 
separation, mass transfer and common enveloppe 
efficiencies.

p(m)dm ∝ m−2.3

Drawing a population
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Results : Mass distribution

• Several identified regions : 
- Low masses 
- Intermediate masses 
- High masses 
- High/intermediate masses 


• Region not populated

Initial masses distribution of the events

32



Results : masses and orbital separation

• Two regimes : 
-High masses/Low separation 
- Low masses/High separation

33



Results : Masses and

mass transfer efficiency

• For m1 : 
- Low mass/High xfer 
- High mass/High xfer 
-Low mass/Low xfer


• For m2 : 
- Low mass/High xfer 
- High mass/High xfer 
- Very high masses/High xfer

WARNING : same color doesn’t mean same sources
34



Results : Masses and metallicity

• For m1 : 
- High mass/Low z 
-Low mass/Higher z


• For m2 : 
- Low mass/High z 
- High mass/Low z 
- Very high masses/Low z

WARNING : same color doesn’t mean same sources
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Results : Masses and Common 
Enveloppe efficiency

• One main behavior :  
Low mass/Low CE
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• High xfer/Low z 
Low separation/ High xfer 
Low separation/Low z


• High z/High separation

Results :
Mass transfer, 
Metallicity and 

orbital separation
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Results : Common enveloppe 
efficiency

• Low CE/High separation


• High CE/Low separation

• Low CE/High z


• High CE/Low z

• Low CE/Low xfer
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