The MBTA pipeline for the 4th observing run of the gravitational waves detector network Vincent Juste

Gravitational waves from compact binary mergers

Two compact object rotating around each other \rightarrow eventually collide

Compact Binary Coalescence (CBC):

- Binary Neutron Star (BNS)
- Binary Black Hole (BBH)
- Neutron Star + Black Hole (**NSBH**)
- others ?

MBTA pipeline: searching for CBC

CBC search pipeline

Uses matched filtering:

- \rightarrow generate bank of waveforms (templates)
- \rightarrow compute correlation of data with templates

MBTA = Multi-Band Template Analysis

Matched filtering in 2 frequency bands

- \rightarrow [24,80]Hz and [80,2048]Hz
- \rightarrow computationally efficient

MBTA main search: BNS, BBH, NSBH

Primarily searches for **HL coincidences**

New template bank for O4, masses : [1, 500] M_{\odot}

higher template density for BNS and BBH

New for O4: single detector triggers alerts

chirp mass

New early warning search for O4

Early warning search → identify loud **BNS before merger**

Multiple cutoff frequencies \rightarrow 34Hz, 42Hz, 50Hz, 58Hz

masses: [1, 2.5] M_{\odot} , spins<0.05

5

Frequency (Hz)

New sub-solar mass search for O4

Sub-Solar Mass (SSM) search

- \rightarrow search for CBC with at least one component below 1M $_{\odot}$
- \rightarrow developed and ran on O3 offline
- \rightarrow Run online for O4
- \rightarrow waiting for green light to send alerts

2.0

Probability of astrophysical origin and source classification

New for O4: pipeline specific information

- developed for O3 catalogs

help astronomer in their choice of events

 $p_{
m astro} = rac{ ext{astrophysical rate}}{ ext{astrophysical rate} + ext{background rate}}$

astrophysical rate = BNS + BBH + NSBH rate

 $p_{\rm BNS} + p_{\rm BBH} + p_{\rm NSBH} = p_{\rm astro}$

Depends on regions of the parameter space

- \rightarrow divide it in bins of chirp mass and mass ratio
- \rightarrow each bin has its own foreground and background
- \rightarrow uses O3 observation

Astrophysical properties

probability of having at least 1 neutron star: $hasNS = \frac{p_{BNS} + p_{NSBH}}{p_{astro}}$

probability of remaining mass after merger: has Remnant = $\frac{p_{BNS} + p_{NSBH-bright}}{p_{astro}}$

 \rightarrow relies on parametrization of remnant mass from <u>Foucart et al.</u>

 \rightarrow bright NSBH if remnant mass > 1.e-3

False alarm rate

new false alarm rate (FAR) computation for O4

During O3: FAR doesn't account for astro. populations and rates \rightarrow gave the same weight to different regions of parameter space

For O4: include the knowledge of rates and populations in FAR computation

 \rightarrow FAR(pAstro)

 \rightarrow for given pAstro, FAR = expected rate of background event with higher pAstro

 \rightarrow ensures more consistency between FAR and pAstro

Conclusion

MBTA is currently running on O4 data

- new template bank
- new searches
- proba of astro origin + source classification
- new FAR(pAstro)
- O4: 5 MBTA significant alerts out of 6 2 as preferred event

S230605o: uploaded by MBTA FAR = 1 per 7.0 years pBBH > 99%