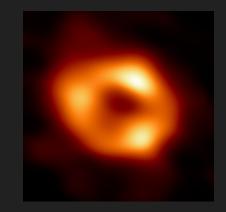
Update in the search for close massive binary black holes: a list of new candidates

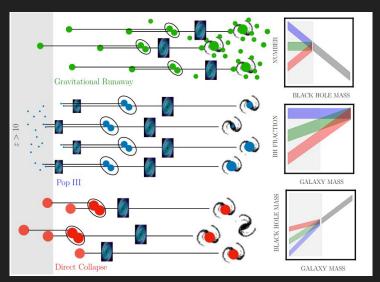
Vincent Foustoul - Natalie Webb Journées SF2A


Table of contents

- I. Scientific context
- II. Method
- III. Results
- IV. Conclusion

Supermassive Black holes (SMBHs)

- Stellar mass black holes :
 - \circ Mass : 5-60 M $_{\odot}$
 - End of life of massive stars


- SMBHs :
 - Mass : 10⁵ 10¹⁰ M_o
 - Located in the center of galaxies

Sagittarius A* : SMBH in the center of the Milky Way (credit: EHT)

Scientific context	N	/lethods	
Supermassive black holes LISA Massive Binary Black Holes	Observational signaturesOptical surveys	Known possible candidatesLightcurves	Results

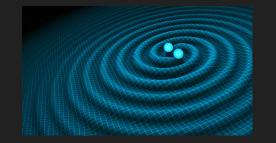
Supermassive Black holes (SMBHs)

Three different formation and evolutionary paths leading to SMBHs : which one?

Formation and evolution scenarios leading to SMBHs (Greene, Strader and Ho, 2020)

Scientific context

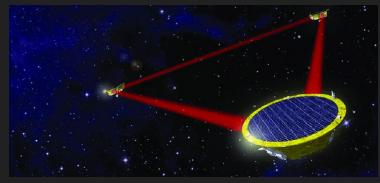
- Supermassive black holes
- LISA
- Massive Binary Black Holes


Methods

- Observational signatures
- Optical surveys

- Known possible candidates
- Lightcurves

LISA



Gravitational wave emission (Credit: NASA)

- First space-based gravitational waves observatory _
- Frequency : 0.1 mHz to 1 Hz
- Range of detected binaries by LISA -
 - M≈10⁴⁻⁷ M_☉ to redshift z≈15

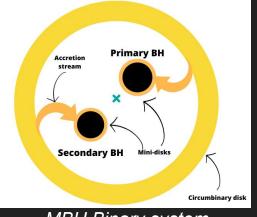
Creation of a LISA sources catalog

Compact objects binary produce

gravitational waves

Artist view of LISA observatory (Credit: ESA)

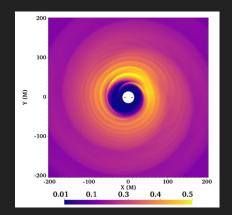
Scientific context


- Supermassive black holes
- LISA
- Massive Binary Black Holes

- Methods
- Observational signatures
- **Optical surveys**

- Known possible candidates
- Lightcurves

Results


Massive Binary Black Holes (MBBHs)

MBH Binary system

- Periodic optical variability :
 - Blob of gas in the circumbinary disk
 - Periodic accretion flow
 - Doppler boosting emission
- Double peaked emission line

- System separated in three parts :
 - Circumbinary disk
 - Accretion streams
 - Mini-disks

Density map after 63 orbits in an equal mass MBBH (Mignon-Risse, Varniere, Casse, 2023)

Scientific	context
------------	---------

- Supermassive black holes
- LISA
- Massive Binary Black Holes

Observational signatures

- Optical surveys

Methods

- Known possible candidates
- Lightcurves

Optical catalogs

- Catalina Real-Time Transient Survey (CRTS) optical catalog :
 - Mt Lemmon Survey
 - Catalina Sky Survey
 - Siding Spring Survey
- Observations : ~2005-2015 in V band
 - ~ 500 million objects

Catalina Sky Survey (Credit: University of Arizona)

- Zwicky Transient Facility (ZTF) :
 - Palomar observatory
- Observations : ~2017 ongoing in r, g and i filters
- ~ 7 billion sources

Palomar observatory (Credit: Caltech)

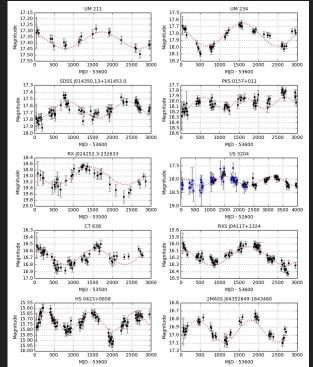
Scientific context

- Supermassive black holes
- LISA
- Massive Binary Black Holes

Methods

- Observational signatures
- Optical surveys

Known possible candidates


Lightcurves

Known possible candidates

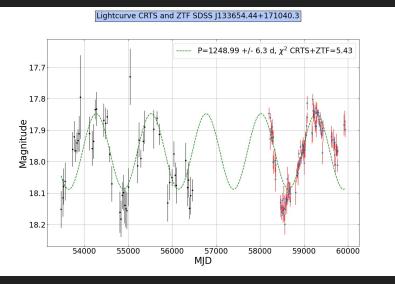
• Many dual-MBBHs at kpc scale already discovered

- few mpc MBBH candidates
 - OJ 287
 - 111 identified in Graham et al, 2015

 Intrinsic quasar variability due to the accretion process (red noise)

Periodic variabilities identified in quasars from CRTS survey (Graham et al, 2015)

- Supermassive black holes
- LISA
- Massive Binary Black Holes

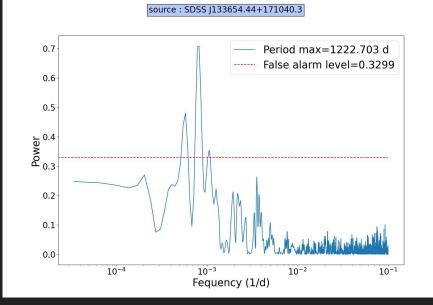

Methods

- Observational signatures
- Optical surveys

Known possible candidates

Lightcurves

Lightcurves

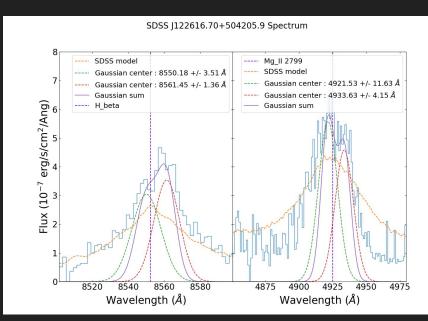

SDSS J133654.44+171040.3 CRTS (black) and ZTF (red) optical lightcurve

- Confirmed 24 out of 111 graham candidates thanks to ZTF observations
- Identified ZTF variable sources in the center of galaxies
- Searched for periodicities
- Included CRTS observations to increase the number of periods
- Identified 10 strong candidates and created a catalog of more possible MBBHs

Scientific context	N	lethods	
 Supermassive black holes LISA Massive Binary Black Holes 	Observational signaturesOptical surveys	Known possible candidatesLightcurves	Results

Lightcurves

- Sample of 34 strong MBBHs candidates
- Validated found periodicities with Lomb-Scargle periodogram



SDSS J133654.44+171040.3 Lomb-Scargle periodogram

	Scientific context		Μ	ethods		
•	Supermassive black holes LISA Massive Binary Black Holes	•	Observational signatures Optical surveys	•	Known possible candidates Lightcurves	Results

Results

- Searched for confirmation of found candidates in SDSS spectra
- 2 out of the 34 candidates exhibit double-peaked emission line
- Submitted an ESO proposal to observe optical spectrum of found candidates
- Started a multi-messenger search in PTA data
- Foustoul et al, in prep

J122616.70+504205.9 SDSS H_{β} (left) and Mg_{μ} (right) double peaked emission lines

	Scientific context		Me	thods			
•	Supermassive black holes LISA Massive Binary Black Holes	•	Observational signatures Optical surveys	•	Known possible candidates Lightcurves	Results	

11

Conclusion and future work

• Created a catalog of possible merger candidates

• Found merger are important at cosmological distances but still today

• Multi-messenger follow up to validate the identified variabilities and constrain the origin of the observed variations.

• Vera C. Rubin first light planned for december 2023, will be useful to find binaries with closer separation

