Looking for MBH binary through its impact on the iron K α emission line

Fabien Casse, Alexis Coleiro, Peggy Varniere Jonathon Baird, Fabrice Dodu, Pierre-Alexandre Duverne, Matthias González, Raphaël Mignon-Risse

Léna ARTHUR - 3rd year PhD student at APC Laboratory (Paris)

MBH of mass M_2

Emission of gravitational waves

MBH of mass M_2

Emission of electromagnetic counterpart

Is it distinct from the electromagnetic emission by an isolated AGN ?

Conclusions of the simulations

Influence of the MBH companion Smaller outer edge Density wave spiral Elliptic shape of the disc

Detectability ?

MBH of mass M_2

Emission of electromagnetic counterpart

Is it distinct from the electromagnetic emission by an isolated AGN ?

Conclusions of the simulations

Influence of the MBH companion Smaller outer edge

Detectability? \rightarrow Profile of the broad K α emission line at 6.4 keV

Emission of electromagnetic counterpart

Hartnoll & Blackman 2000, 2001 and 2002

Interest of this method

Non-axisymetries in the disc can be taken into account

 \rightarrow Impact of the spiral wave and the ellipticity

Hypothesis and approximations of the model

• Lamppost model to describe the hard X-rays emitting regions (corona)

Hard X-ray illumination from the corona

Hartnoll & Blackman 2000, 2001 and 2002

Interest of this method

Non-axisymetries in the disc can be taken into account

 \rightarrow Impact of the spiral wave and the ellipticity

Hypothesis and approximations of the model

- Lamppost model to describe the hard X-rays emitting regions (corona)
- Schwarzschild metric to describe the space time around BH_1
- 1st order expansion of the photons geodesic equations

Hard X-ray illumination from the corona

Hartnoll & Blackman 2000, 2001 and 2002

Interest of this method Non-axisymetries in the disc can be taken into account \rightarrow Impact of the spiral wave and the ellipticity

Line photons trajectory towards the observer

Hypothesis and approximations of the model

- Lamppost model to describe the hard X-rays emitting regions (corona)
- Schwarzschild metric to describe the space time around BH_1
- 1st order expansion of the photons geodesic equations
- The emitting region of the disc extends down to the last stable circular orbit

Hard X-ray illumination from the corona

Hartnoll & Blackman 2000, 2001 and 2002

Interest of this method Non-axisymetries in the disc can be taken into account \rightarrow Impact of the spiral wave and the ellipticity

Line photons trajectory towards the observer

Iron K α emission line profile

Isolated AGN

Parameters in the model

Truncation of the outer edge

Parameters in the model

Truncation of the outer edge

Observed line with gaussian noise, standard deviation $\sigma = 2\%$ Error on observed flux in each bin: 3σ 30 -Theoretical line : (r_{max}, i_{obs}, h_s) 25Flux in each bin = random gaussian drawn • Mean: theoretical flux in the bin 15 Error in the flux in each bin: 3σ 10 **Observed** line 5

4.0

arbitray units)

Flux (in

 $0 \downarrow 3.5$

20

 v_{obs} (in keV)

4.5

Generate an observed line

Presentation of the method

$F_{B_{\alpha}}$ For an observed line : compute the flux ratio $F_{B_{\beta}}$

 \rightarrow Flux ratios to distinguish i_{obs}

Definition of the frequency ranges :

- \rightarrow Flux ratios to distinguish r_{max}

CONLUSIONS

Influence of the MBH companion on the radius of the disc outer edge \Rightarrow Change the profile of the iron line

• With the 7 flux ratios that we chose

• To determine r_{max} at a precision of 50 %:

 \rightarrow The error on the flux in bins of width 7 eV must me below 2 %

 \rightarrow The correspondance for the precision on the flux in each band which define the flux ratios are given

$$\Rightarrow \text{ for } M = 10^8 M_{\odot}: \quad r_{max} + \Delta r_{max} \le 1 \text{ } 200 \text{ } R_s \text{ when}$$
$$T_{orb} = 94 \text{ days}$$
$$T_{merger} = 5 \times 10^6 \text{ years}$$

/!\ It is not a final diagnostic for the presence of MBH binary → BUT it could be used within a body of corroborating evidence to distinguish between a MBH binary merging and isolated AGNs

Could the presence of a massive black hole companion impact the shape of the iron K α emission line at a detectable level ?

PERSPECTIVES

Influence of a MBH companion on the accretion disc of a primary MBH

Hydrodynamical simulations with pseudo-Newtonian potential

Influence of a MBH companion on the accretion disc of a primary MBH

Hydrodynamical simulations with pseudo-Newtonian potential

$$\frac{\partial \rho}{\partial t} + \overrightarrow{\nabla} \cdot \left(\rho \,\overrightarrow{u}\right) = 0$$

$$\rho \frac{\partial \vec{u}}{\partial t} + \rho \left(\vec{u} \cdot \vec{\nabla} \right) \vec{u} = -\vec{\nabla} p + \vec{F}_{\mathscr{C}} + \vec{F}_{BH_1} + \vec{F}_{BH_2}$$

• $p = \kappa \rho^{\gamma}$

Monte Carlo simulation

10

8

Energy (keV)

Iron K α emission line

Doppler shift ; Gravitational red-shift ; Light bending

Intersection of all spaces $\left\{ \left[r_{max}, i_{obs}, h \right] \right\}$ for all 7 flux ratio

 \Rightarrow Final compatible values of r_{max}

val

600 800 1000 1200 1400 Injected value of *r_{max}*

Error on the flux in each bin: 2.5%

600 800 1000 1200 1400 Injected value of r_{max}

Error on the flux in each bin: 6.0%

800 1000 1200 1400 Injected value of r_{max}

\rightarrow Error on the flux in each bin of width $\Delta E = 7$ eV: Below 2% of the flux

Low inclination angles

