

Fractal aggregates of sub-micron-sized grains in the young planet-forming disk around IM Lup

Ryo Tazaki IPAG, Université Grenoble Alpes CNES Postdoctral fellowship

Christian Ginski (University of Galway) Carsten Dominik (University of Amsterdam)

Near-IR scattered light of the IM Lup disk

Near-IR scattered light image by VLT/SPHERE (polarized intensity)

What do the scattered light images tell us about dust properties?

Light scattering database: AggScatVIR

Particle shape models (8 types)

Different monomer radius (0.1, 0.2, 0.3, 0.4 µm)

Tazaki et al. (2023) Tazaki and Dominik (2022)

size distribution

Two compositions

360 sets of dust models

Light scattering simulations:

- T-matrix method with MSTM code v3.0 Mackowski & Mishchenko 2011
- DDA with ADDA Yurkin & Hoekstra 2011

Random Orientation

Dust composition:

• High albedo model

carbon form: refractory organics i.e. DSHARP like; Birnstiel et al. 2018

Low albedo model

carbon form: amorphous carbon i.e. DIANA like; Woitke et al. 2016

Radiative transfer simulations of the disk

Dust scattering database

Disk model:

- Disk geometry (Avenhaus+18)
- Dust mass (fiducial: Zhang+2021) (another parameter)

Radiative transfer (RADMC-3D; Dullemond+12)

VLT/SPHERE (Avenhaus+18)

- Disk polarized flux
- Scattering angle dependence of polarized intensity at 90 au, 150 au ('polarization phase function')

Low albedo vs. high albedo composition

Type: Fractal aggregates (Df=1.9; BCCA) Size: a_{min}=2a_{mon}, a_{max}=6.5 μm, p=-3.5 Monomer radius: 0.2 μm

Low albedo vs. high albedo composition

Type: Fractal aggregates (Df=1.9; BCCA) Size: a_{min}=2a_{mon}, a_{max}=6.5 μm, p=-3.5 Monomer radius: 0.2 μm

Polarization phase function (normalized to 90°)

How large are the monomers?

Type: Fractal aggregates (Df=1.9; BCCA) Size: a_{min}=2a_{mon}, a_{max}=6.5 µm, p=-3.5 Composition: Low albedo

Polarization phase function (normalized to 90°)

How large are the monomers?

Type: Fractal aggregates (Df=1.9; BCCA) Size: a_{min}=2a_{mon}, a_{max}=6.5 µm, p=-3.5 Composition: Low albedo

Polarization phase function (normalized to 90°)

Are we observing primordial coagulation?

 Brownian motion produces low-dimension fractal aggregates!

Blum et al. 2000, Krause & Blum 2004, Paszun & Dominik 2006

$$D_{\rm f} \sim 1.1 - 1.46$$

 The earliest phase of dust coagulation is likely driven by Brownian motion.

We speculate that we witness the earliest phase of dust coagulation in the IM Lup surface !?

Microgravity experiments

Blum et al. 2000

We have studied the polarization phase function of the IM Lup disk. Our results suggest that dust particles are

- fractal aggregates with Df~1.5 and >2 μ m,
- with a monomer radius of $\sim 0.2 \,\mu m$,
- made of the low-albedo material.

Are we observing the very first moment of planet formation?!

Tazaki, Ginski, and Dominik (2023, ApJL, 944, L43)

